23 research outputs found

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    Get PDF
    Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R

    Genome-wide significant association with seven novel multiple sclerosis risk loci

    Get PDF
    Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10−8) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10−12), CD28 (rs6435203, p=1.35×10−9), LPP (rs4686953, p=3.35×10−8), ETS1 (rs3809006, p=7.74×10−9), DLEU1 (rs806349, p=8.14×10−12), LPIN3 (rs6072343, p=7.16×10−12) and IFNGR2 (rs9808753, p=4.40×10−10). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases

    Genome-wide significant association with seven novel multiple sclerosis risk loci

    Get PDF
    Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10−8) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10−12), CD28 (rs6435203, p=1.35×10−9), LPP (rs4686953, p=3.35×10−8), ETS1 (rs3809006, p=7.74×10−9), DLEU1 (rs806349, p=8.14×10−12), LPIN3 (rs6072343, p=7.16×10−12) and IFNGR2 (rs9808753, p=4.40×10−10). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases

    Evaluation of presumably disease causing SCN1A variants in a cohort of common epilepsy syndromes

    Get PDF
    Objective: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation: We identified 8 known missense mutations, previously reported as path

    Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes

    Get PDF
    A. Palotie on työryhmän jäsen.Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p. T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10(-4); OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.Peer reviewe

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Heterogeneous contribution of microdeletions in the development of common generalised and focal epilepsies

    No full text
    Background Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement 'hotspot' loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained. Objective To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype. Methods We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls. Results When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06x10(-6), OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79x10(-12), OR 7.45, 95% CI 4.20-13.5). Outside hotspots, microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13x10(-3), OR 2.85, 95% CI 1.62-4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls. Conclusions Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE

    Dangerous liaisons: the ecology of private interest and common good

    Get PDF
    Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients. Author summary Although the majority of patients diagnosed with multiple sclerosis do not have a family history of disease, 13% report having a close relative also diagnosed with multiple sclerosis. In these families, the cause of multiple sclerosis can be largely attributed to a single genetic variant that is transmitted through generations. In this study we analyzed DNA from 132 patients from 34 families, resulting in the identification of 12 rare genetic variants that are largely responsible for the onset of multiple sclerosis in these families. These variants are located in genes implicated in specific immunological pathways, and suggest the biological mechanisms that trigger the onset of multiple sclerosis. These genes and variants provide the means for the generation of cellular and animal models of human disease, and highlight biological targets for the development of novel treatments.This research was undertaken thanks to funding from the Canada Research Chair program (950-228408), Michael Smith Foundation for Health Research (16827), the Canadian Institutes of Health Research (MOP-137051), the Vancouver Coastal Health Research Institute, the Milan & Maureen Ilich Foundation (11-32095000), and the Vancouver Foundation (ADV14-1597) to CVG. Additional funds were provided by "Red Espanola de Esclerosis Multiple (REEM)" (grant to KV was RD12/0032/0013; RETICS, ISCIII), Project FIS PI13/0879 Grant RETICS-REEM RD07/0060/0019; Ministerio de Economia y Competitividad-FEDER SAF2016-80595-C2-1-P to AA and FM, Junta de Andalucia-FEDER to FM, and the Ricerca Finalizzata of the Italian Ministry of Health (RF-201102350347). EU, LL, LEP, and PUR are members of the Spanish Network of Multiple Sclerosis REEM RD16/0015/0010, supported by Institute of Health "Carlos III" of the Ministry of Economy and Competitiveness (grants cofunded by European Regional Development Fund). LL holds a Nicolas Monardes contract (C-0014-2015) from the Andalusian Health Ministry. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Las cartas de patrocinio

    Get PDF
    Las cartas de patrocinio son un instrumento jurídico con muy poca tradición en la jurisprudencia española que se ha hecho bastante popular recientemente en el ámbito financiero de los grupos de sociedades debido tanto a la facilidad o simpleza con la que se emiten, como a las ventajas fiscales que ostentan frente a otras garantías clásicas (fianza, aval…). El Tribunal Supremo se ha visto obligado desde 1985, a pronunciarse sobre sus efectos e interpretación de un instrumento que no estaba regulado ni siquiera en el Código Civil. No sin problemas en su interpretación, se ha diferenciado entre cartas débiles y fuertes, pasando en estas últimas de ser equiparadas a una fianza a considerarse que generan una obligación contractual para la emisora de la carta.Comfort letters are a legal instrument with not much tradition in Spanish Law which have recently become very popular in financial aspects of business holdings. Their rising popularity has been possible due to the facility and simplicity being issued and also because of the fiscal benefits they have against other security interests (bond, endorsement…). The High Court has been forced since 1985 to make statement about the Comfort Letters effects and their interpretation because they were not even regulated in the Spanish Civil Code. Counting also with some interpretation troubles, it has been also possible to discern between weak and strong comfort letters. The last ones, were compared to a bond and now they are considered a contractual obligation for their issuer.Graduado o Graduada en Administración y Dirección de Empresas por la Universidad Pública de NavarraEnpresen Administrazio eta Zuzendaritzan Graduatua Nafarroako Unibertsitate Publikoa
    corecore