45 research outputs found

    Dependence on clade II bHLH transcription factors for nursing of haploid products by tapetal-like cells is conserved between moss sporangia and angiosperm anthers

    Get PDF
    Clade II basic helix-loop-helix transcription factors (bHLH TFs) are essential for pollen production and tapetal nursing functions in angiosperm anthers. As pollen has been suggested to be related to bryophyte spores by descent, we characterized two Physcomitrium (Physcomitrella) patens clade II bHLH TFs (PpbHLH092 and PpbHLH098), to test if regulation of sporogenous cells and the nursing cells surrounding them is conserved between angiosperm anthers and bryophyte sporangia. We made CRISPR-Cas9 reporter and loss-of-function lines to address the function of PpbHLH092/098. We sectioned and analyzed WT and mutant sporophytes for a comprehensive stage-by-stage comparison of sporangium development. Spore precursors in the P. patens sporangium are surrounded by nursing cells showing striking similarities to tapetal cells in angiosperms. Moss clade II bHLH TFs are essential for the differentiation of these tapetal-like cells and for the production of functional spores. Clade II bHLH TFs provide a conserved role in controlling the sporophytic somatic cells surrounding and nursing the sporogenous cells in both moss sporangia and angiosperm anthers. This supports the hypothesis that such nursing functions in mosses and angiosperms, lineages separated by roughly 450 million years, are related by descent

    MS1/MMD1 homologues in the moss Physcomitrium patens are required for male and female gametogenesis

    Get PDF
    The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants

    Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche.

    Get PDF
    Hypoxia is emerging as an important characteristic of the hematopoietic stem cell (HSC) niche, but the molecular mechanisms contributing to quiescence, self-renewal, and survival remain elusive. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis and hematopoiesis. Its expression is commonly regulated by hypoxia-inducible factors (HIF) that are functionally induced in low-oxygen conditions and that activate transcription by binding to hypoxia-response elements (HRE). Vegfa is indispensable for HSC survival, mediated by a cell-intrinsic, autocrine mechanism. We hypothesized that a hypoxic HSC microenvironment is required for maintenance or upregulation of Vegfa expression in HSCs and therefore crucial for HSC survival. We have tested this hypothesis in the mouse model Vegfa(δ/δ), where the HRE in the Vegfa promoter is mutated, preventing HIF binding. Vegfa expression was reduced in highly purified HSCs from Vegfa(δ/δ) mice, showing that HSCs reside in hypoxic areas. Loss of hypoxia-regulated Vegfa expression increases the numbers of phenotypically defined hematopoietic stem and progenitor cells. However, HSC function was clearly impaired when assessed in competitive transplantation assays. Our data provide further evidence that HSCs reside in a hypoxic microenvironment and demonstrate a novel way in which the hypoxic niche affects HSC fate, via the hypoxia-Vegfa axis

    Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control

    Get PDF
    The plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants. We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway inPhyscomitrium(Physcomitrella)patensand established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters. Vegetative and reproductive apical stem cells synthesize auxin. Sustained stem cell activity depends on an inability to sense the auxin produced while progeny of the stem cells respond to the auxin, aiding in the control of cell division, expansion and differentiation. Gamete precursors are dependent on a certain degree of auxin sensing, while the final differentiation is a low auxin-sensing process. Tha data presented indicate that low auxin activity may represent a conserved hallmark of land plant gametes, and that local auxin biosynthesis in apical stem cells may be part of an ancestral mechanism to control focal growth

    Directional auxin transport mechanisms in early diverging land plants

    Get PDF
    The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans [1]. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants [2, 3, 4 and 5]. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants

    Early pregnancy plasma fatty acid profiles of women later diagnosed with gestational diabetes

    Get PDF
    Introduction Fatty acid (FA) concentrations have previously been associated with gestational diabetes mellitus (GDM). However, few studies on GDM have examined FA profiles in early pregnancy or before diagnosis. This study aimed to compare early pregnancy plasma FA profiles of women with and without GDM diagnoses as well as their reported dietary consumption. Research design and methods The subjects comprised 853 women from the prospective study: Pregnant Women in Iceland II (PREWICE II), attending their 11-14 weeks ultrasound appointment in 2017-2018. During the visit, blood samples were collected for plasma FA analysis, and dietary habits were assessed using a short food frequency questionnaire. Information on GDM diagnoses was then later extracted from medical records. Differences in FA profile between GDM cases and non-cases were evaluated using the Mann-Whitney U test. Results GDM was diagnosed in 127 women (14.9%). Concentrations of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids (PUFA) n-6, PUFA n-3 and total FA were higher in the women who later developed GDM compared with those who did not (p≤0.05). The medians for total FA were 2898 μg/mL for the women with GDM and 2681 μg/mL for those without GDM. Mean adjusted difference for total FA between the groups was 133 μg/mL (95% CI 33 to 233). Similar results were observed in prepregnancy normal-weight women and overweight women/women with obesity. Overall diet quality in early pregnancy appeared to be lower among the women later diagnosed with GDM. Conclusion We found that plasma FA profiles in early pregnancy were different for women later diagnosed with GDM compared with those who were not, independent of the women\u27s body mass index

    Use of a Web-Based Dietary Assessment Tool (RiksmatenFlex) in Swedish Adolescents: Comparison and Validation Study

    Get PDF
    BACKGROUND: A Web-based dietary assessment tool-RiksmatenFlex-was developed for the national dietary survey of adolescents in Sweden. OBJECTIVE: This study aimed to describe the Web-based method RiksmatenFlex and to test the validity of the reported dietary intake by comparing dietary intake with 24-hour dietary recalls (recall interviews), estimated energy expenditure, and biomarkers. METHODS: Adolescents aged 11-12, 14-15, and 17-18 years were recruited through schools. In total, 78 students had complete dietary information and were included in the study. Diet was reported a few weeks apart with either RiksmatenFlexDiet (the day before and a random later day) or recall interviews (face-to-face, a random day later by phone) in a cross-over, randomized design. At a school visit, weight and height were measured and blood samples were drawn for biomarker analyses. Students wore an accelerometer for 7 days for physical activity measurements. Dietary intake captured by both dietary methods was compared, and energy intake captured by both methods was compared with the accelerometer-estimated energy expenditure (EEest). Intake of whole grain wheat and rye and fruit and vegetables by both methods was compared with alkylresorcinol and carotenoid concentrations in plasma, respectively. RESULTS: The mean of the reported energy intake was 8.92 (SD 2.77) MJ by RiksmatenFlexDiet and 8.04 (SD 2.67) MJ by the recall interviews (P=.01). Intake of fruit and vegetables was 224 (169) g and 227 (150) g, and whole grain wheat and rye intake was 12.4 (SD 13.2) g and 12.0 (SD 13.1) g, respectively; the intakes of fruit and vegetables as well as whole grain wheat and rye did not differ between methods. Intraclass correlation coefficients ranged from 0.57 for protein and carbohydrates to 0.23 for vegetables. Energy intake by RiksmatenFlexDiet was overreported by 8% (P=.03) but not by the recall interviews (P=.53) compared with EEest. The Spearman correlation coefficient between reported energy intake and EEest was 0.34 (P=.008) for RiksmatenFlexDiet and 0.16 (P=.21) for the recall interviews. Spearman correlation coefficient between whole grain wheat and rye and plasma total alkylresorcinol homologs was 0.36 (P=.002) for RiksmatenFlexDiet and 0.29 (P=.02) for the recall interviews. Spearman correlations between intake of fruit and vegetables and plasma carotenoids were weak for both dietary tools. The strongest correlations were observed between fruit and vegetable intake and lutein/zeaxanthin for RiksmatenFlexDiet (0.46; P<.001) and for recall interviews (0.28; P=.02). CONCLUSIONS: RiksmatenFlexDiet provides information on energy, fruit, vegetables, and whole grain wheat and rye intake, which is comparable with intake obtained from recall interviews in Swedish adolescents. The results are promising for cost-effective dietary data collection in upcoming national dietary surveys and other studies in Sweden. Future research should focus on how, and if, new technological solutions could reduce dietary reporting biases

    The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification

    Get PDF
    Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell

    Disialo–trisialo bridging of transferrin is due to increased branching and fucosylation of the carbohydrate moiety

    No full text
    Background Carbohydrate deficient transferrin (CDT) is used for detection of alcohol abuse and follow-up. High performance liquid chromatography (HPLC) of transferrin glycoforms is highly specific for identification of alcohol abuse, but unresolved disialo- and trisialotransferrin glycoforms sometimes makes interpretation difficult. The cause of this phenomenon is unknown, cannot be explained by genetic variants of transferrin, but seems to be associated with liver disease. Methods Nineteen serum samples showing di–tri bridging when analyzed by HPLC were collected. Transferrin was purified by affinity chromatography, and N-linked oligosaccharides were released enzymatically. The N-glycans were further analyzed by high performance anion-exchange chromatography with pulsed amperometric detection and MALDI-TOF mass spectrometry. Results The HPLC-analysis showed three different types of glycoform patterns. The N-glycans from fifteen samples showed patterns with increased number of triantennary structures containing one or two fucose residues. One sample contained an increased amount of triantennary glycans without fucose. Three samples showed a glycosylation pattern similar to normal transferrin. Conclusions The di–tri bridging phenomenon was associated with alterations in transferrin glycosylation in the majority of cases. Transferrin contained a higher extent of triantennary and often fucosylated N-linked oligosaccharides. These results may be important in future diagnostic approaches to liver diseases.Funding Agencies|Medical Research Council of Southeast Sweden||</p
    corecore