Disialo–trisialo bridging of transferrin is due to increased branching and fucosylation of the carbohydrate moiety

Abstract

Background Carbohydrate deficient transferrin (CDT) is used for detection of alcohol abuse and follow-up. High performance liquid chromatography (HPLC) of transferrin glycoforms is highly specific for identification of alcohol abuse, but unresolved disialo- and trisialotransferrin glycoforms sometimes makes interpretation difficult. The cause of this phenomenon is unknown, cannot be explained by genetic variants of transferrin, but seems to be associated with liver disease. Methods Nineteen serum samples showing di–tri bridging when analyzed by HPLC were collected. Transferrin was purified by affinity chromatography, and N-linked oligosaccharides were released enzymatically. The N-glycans were further analyzed by high performance anion-exchange chromatography with pulsed amperometric detection and MALDI-TOF mass spectrometry. Results The HPLC-analysis showed three different types of glycoform patterns. The N-glycans from fifteen samples showed patterns with increased number of triantennary structures containing one or two fucose residues. One sample contained an increased amount of triantennary glycans without fucose. Three samples showed a glycosylation pattern similar to normal transferrin. Conclusions The di–tri bridging phenomenon was associated with alterations in transferrin glycosylation in the majority of cases. Transferrin contained a higher extent of triantennary and often fucosylated N-linked oligosaccharides. These results may be important in future diagnostic approaches to liver diseases.Funding Agencies|Medical Research Council of Southeast Sweden||</p

    Similar works

    Full text

    thumbnail-image