31 research outputs found

    Immunophenotypic Analysis of Acute Megakaryoblastic Leukemia: A EuroFlow Study

    Get PDF
    Acute megakaryoblastic leukemia (AMKL) is a rare and heterogeneous subtype of acute myeloid leukemia (AML). We evaluated the immunophenotypic profile of 72 AMKL and 114 non-AMKL AML patients using the EuroFlow AML panel. Univariate and multivariate/multidimensional analyses were performed to identify most relevant markers contributing to the diagnosis of AMKL. AMKL patients were subdivided into transient abnormal myelopoiesis (TAM), myeloid leukemia associated with Down syndrome (ML-DS), AML—not otherwise specified with megakaryocytic differentiation (NOS-AMKL), and AMKL—other patients (AML patients with other WHO classification but with flowcytometric features of megakaryocytic differentiation). Flowcytometric analysis showed good discrimination between AMKL and non-AMKL patients based on differential expression of, in particular, CD42a.CD61, CD41, CD42b, HLADR, CD15 and CD13. Combining CD42a.CD61 (positive) and CD13 (negative) resulted in a sensitivity of 71% and a specificity of 99%. Within AMKL patients, TAM and ML-DS patients showed higher frequencies of immature CD34+/CD117+ leukemic cells as compared to NOS-AMKL and AMKL-Other patients. In addition, ML-DS patients showed a significantly higher expression of CD33, CD11b, CD38 and CD7 as compared to the other three subgroups, allowing for good distinction of these patients. Overall, our data show that the EuroFlow AML panel allows for straightforward diagnosis of AMKL and that ML-DS is associated with a unique immunophenotypic profile.The EuroFlow Consortium received support from the FP6-2004-LIFESCIHEALTH-5 program of the European Commission (grant LSHB-CT-2006-018708) as Specific Targeted Research Project (STREP). The EuroFlow Consortium is part of the European Scientific Foundation for HematoOncology (ESLHO), a Scientific Working Group (SWG) of the European Hematology Association (EHA). The work of C.E.P. and E.S.C. was partially supported by FAPERJ (Grant E26/200.840/2021- CNE; E26/210.379/2018 and E26/110.105/2014); CAPES-PROEX; and CNPq (Grant 306258/2019-6 and 303765/2018-6). M.N. and E.M. were supported by the Ministry of Health of the Czech Republic, grant number NU20J-07-00028. S.M. was supported by Acción Estratégica en Salud (AES) (Grant PI21_01115) and the grant of CIBERONC of the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain and FONDOS FEDER (no. CB16/12/00400)

    EuroFlow-based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system

    Get PDF
    Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naive pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the EuroFlow PID algorithm in parallel or subsequently to the PIDOT for more detailed analysis of B-cell and T-cell subsets to further classify PID of the lymphoid system. The Pre-GC, Post-GC, and immunoglobulin heavy chain (IgH)-isotype B-cell tubes aim at identification and enumeration of B-cell subsets for evaluation of B-cell maturation blocks and specific defects in IgH-subclass production. The severe combined immunodeficiency (SCID) tube and T-cell memory/effector subset tube aim at identification and enumeration of T-cell subsets for assessment of T-cell defects, such as SCID. In case of suspicion of antibody deficiency, PIDOT is preferably directly combined with the IgH isotype tube(s) and in case of SCID suspicion (e.g., in newborn screening programs) the PIDOT is preferably directly combined with the SCID T-cell tube. The proposed >= 8-color antibody panels and corresponding reference databases combined with the EuroFlow PID algorithm are designed to provide fast, sensitive and cost-effective flowcytometric diagnosis of PID of the lymphoid system, easily applicable in multicenter diagnostic settings world-wide

    The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system

    Get PDF
    Copyright © 2019 van der Burg, Kalina, Perez-Andres, Vlkova, Lopez-Granados, Blanco, Bonroy, Sousa, Kienzler, Wentink, Mejstríková, Šinkorova, Stuchly, van Zelm, Orfao and van Dongen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.In the rapidly evolving field of primary immunodeficiencies (PID), the EuroFlow consortium decided to develop a PID orientation and screening tube that facilitates fast, standardized, and validated immunophenotypic diagnosis of lymphoid PID, and allows full exchange of data between centers. Our aim was to develop a tool that would be universal for all lymphoid PIDs and offer high sensitivity to identify a lymphoid PID (without a need for specificity to diagnose particular PID) and to guide and prioritize further diagnostic modalities and clinical management. The tube composition has been defined in a stepwise manner through several cycles of design-testing-evaluation-redesign in a multicenter setting. Equally important appeared to be the standardized pre-analytical procedures (sample preparation and instrument setup), analytical procedures (immunostaining and data acquisition), the software analysis (a multidimensional view based on a reference database in Infinicyt software), and data interpretation. This standardized EuroFlow concept has been tested on 250 healthy controls and 99 PID patients with defined genetic defects. In addition, an application of new EuroFlow software tools with multidimensional pattern recognition was designed with inclusion of maturation pathways in multidimensional patterns (APS plots). The major advantage of the EuroFlow approach is that data can be fully exchanged between different laboratories in any country of the world, which is especially of interest for the PID field, with generally low numbers of cases per center.The coordination and innovation processes of this study were supported by the EuroFlow Consortium (Chairmen: MvdB and AO). MvZ is supported by Senior Research Fellowship GNT1117687 from the Australian National Health and Medical Research Council. TK and EM were supported by projects 15-28541A from Ministry of Health, LO1604 from Ministry of Education, Youth and Sports and GBP302/12/G101 from Grant Agency of the Czech Republic. MP-A, EB, and AO were supported by a grant from the Junta de Castilla y León (Fondo Social Europeo, ORDEN EDU/346/2013, Valladolid, Spain) and the CB16/12/00400 grant (CIBER/ONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, - Madrid, Spain- and FONDOS FEDER), the FIS PI12/00905-FEDER grant (Fondo de Investigación Sanitaria of Instituto de Salud Carlos III, Madrid, Spain) and AP119882013 grant (Fundación Mutua Madrileña, Madrid, Spain). Publishing costs for this article were covered by the International Union of Immunological Societies (IUIS).info:eu-repo/semantics/publishedVersio

    Dissection of the pre-germinal center B-cell maturation pathway in common variable immunodeficiency based on standardized flow cytometric EuroFlow tools

    Get PDF
    Copyright © 2021 del Pino-Molina, López-Granados, Lecrevisse, Torres Canizales, Pérez-Andrés, Blanco, Wentink, Bonroy, Nechvatalova, Milota, Kienzler, Philippé, Sousa, van der Burg, Kalina, van Dongen and Orfao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Introduction: Common Variable Immunodeficiency (CVID) is characterized by defective antibody production and hypogammaglobulinemia. Flow cytometry immunophenotyping of blood lymphocytes has become of great relevance for the diagnosis and classification of CVID, due to an impaired differentiation of mature post-germinal-center (GC) class-switched memory B-cells (MBC) and severely decreased plasmablast/plasma cell (Pb) counts. Here, we investigated in detail the pre-GC B-cell maturation compartment in blood of CVID patients. Methods: In this collaborative multicentric study the EuroFlow PID 8-color Pre-GC B-cell tube, standardized sample preparation procedures (SOPs) and innovative data analysis tools, were used to characterize the maturation profile of pre-GC B-cells in 100 CVID patients, vs 62 age-matched healthy donors (HD). Results: The Pre-GC B-cell tube allowed identification within pre-GC B-cells of three subsets of maturation associated immature B-cells and three subpopulations of mature naïve B-lymphocytes. CVID patients showed overall reduced median absolute counts (vs HD) of the two more advanced stages of maturation of both CD5+ CD38+/++ CD21het CD24++ (2.7 vs 5.6 cells/µl, p=0.0004) and CD5+ CD38het CD21+ CD24+ (6.5 vs 17 cells/µl, p1 (CD38, CD5, CD19, CD21, CD24, and/or smIgM) phenotypic marker (57/88 patients; 65%) for a total of 3 distinct CVID patient profiles (group 1: 42/88 patients, 48%; group 2: 8/88, 9%; and group 3: 7/88, 8%) and ii) CVID patients with a clearly altered pre-GC B cell maturation pathway in blood (group 4: 31/88 cases, 35%). Conclusion: Our results show that maturation of pre-GC B-cells in blood of CVID is systematically altered with up to four distinctly altered maturation profiles. Further studies, are necessary to better understand the impact of such alterations on the post-GC defects and the clinical heterogeneity of CVID.The coordination and innovation processes of this study were supported by the EuroFlow Consortium (Chairmen: MB and AO). LP-M was supported by FIS PI16/01605 and JTC by FIS PI13/02296 (Fondo de Investigación Sanitaria Instituto de Salud Carlos III, Madrid, Spain). The work was partially supported by grant PI20/01712-FEDER (Fondo de Investigación Sanitaria Instituto de Salud Carlos III, Madrid, Spain) and a grant from Fundación Mutua Madrileña (MMA, Madrid, Spain).info:eu-repo/semantics/publishedVersio

    The EuroFlow PID Orientation Tube for Flow Cytometric Diagnostic Screening of Primary Immunodeficiencies of the Lymphoid System

    Get PDF
    In the rapidly evolving field of primary immunodeficiencies (PID), the EuroFlow consortium decided to develop a PID orientation and screening tube that facilitates fast, standardized, and validated immunophenotypic diagnosis of lymphoid PID, and allows full exchange of data between centers. Our aim was to develop a tool that would be universal for all lymphoid PIDs and offer high sensitivity to identify a lymphoid PID (without a need for specificity to diagnose particular PID) and to guide and prioritize further diagnostic modalities and clinical management. The tube composition has been defined in a stepwise manner through several cycles of design-testing-evaluationredesign in a multicenter setting. Equally important appeared to be the standardized preanalytical procedures (sample preparation and instrument setup), analytical procedures (immunostaining and data acquisition), the software analysis (a multidimensional view based on a reference database in Infinicyt software), and data interpretation. This standardized EuroFlow concept has been tested on 250 healthy controls and 99 PID patients with defined genetic defects. In addition, an application of new EuroFlow software tools with multidimensional pattern recognition was designed with inclusion of maturation pathways in multidimensional patterns (APS plots). The major advantage of the EuroFlow approach is that data can be fully exchanged between different laboratories in any country of the world, which is especially of interest for the PID field, with generally low numbers of cases per center

    EuroFlow-based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system

    Get PDF
    Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naïve pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the Eu

    Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC)

    Get PDF
    Here, we investigated for the first time the frequency and number of circulating tumor plasma cells (CTPC) in peripheral blood (PB) of newly diagnosed patients with localized and systemic plasma cell neoplasms (PCN) using next-generation flow cytometry (NGF) and correlated our findings with the distinct diagnostic and prognostic categories of the disease. Overall, 508 samples from 264 newly diagnosed PCN patients, were studied. CTPC were detected in PB of all active multiple myeloma (MM; 100%), and smoldering MM (SMM) patients (100%), and in more than half (59%) monoclonal gammopathy of undetermined significance (MGUS) cases (p < 0.0001); in contrast, CTPC were present in a small fraction of solitary plasmacytoma patients (18%). Higher numbers of CTPC in PB were associated with higher levels of BM infiltration and more adverse prognostic features, together with shorter time to progression from MGUS to MM (p < 0.0001) and a shorter survival in MM patients with active disease requiring treatment (p <= 0.03). In summary, the presence of CTPC in PB as assessed by NGF at diagnosis, emerges as a hallmark of disseminated PCN, higher numbers of PB CTPC being strongly associated with a malignant disease behavior and a poorer outcome of both MGUS and MM

    In-depth blood immune profiling of Good syndrome patients

    Get PDF
    Introduction: Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID).Methods: Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61).Results: All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/mu L) in 8/9 cases-, together with decreased numbers of total CD4(+) T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCR gamma delta(+) T-cells (p <= 0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4(+) T-cells revealed significantly decreased blood counts of na & iuml;ve, central memory (CM) and transitional memory (TM) TCD4(+) cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c(+) and CD141(+) myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCR gamma delta(+) T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected.Discussion: Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    B-cell regeneration profile and minimal residual disease status in bone marrow of treated multiple myeloma patients

    Get PDF
    Simple Summary B-cell regeneration during therapy has been associated with the outcome of multiple myeloma (MM) patients. However, the effects of therapy and hemodilution in bone marrow (BM) B-cell recovery have not been systematically evaluated. Here, we show that hemodilution is present in a significant fraction of MM BM samples, leading to lower total B-cell, B-cell precursor (BCP), and normal plasma cell (nPC) counts. Among MM BM samples, decreased percentages (vs. healthy donors) of BCP, transitional/naive B-cell (TBC/NBC) and nPC populations were observed at diagnosis. BM BCP, but not TBC/NBC, increased after induction therapy. At day+100 post-autolo-gous stem cell transplantation, a greater increase in BCP with recovered TBC/NBC numbers but persistently low memory B-cell and nPC counts were found. At the end of therapy, complete response (CR) BM samples showed higher CD19(-) nPC counts vs. non-CR specimens with no clear association between BM B-cell regeneration profiles and patient outcomes. B-cell regeneration during therapy has been considered as a strong prognostic factor in multiple myeloma (MM). However, the effects of therapy and hemodilution in bone marrow (BM) B-cell recovery have not been systematically evaluated during follow-up. MM (n = 177) and adult (>= 50y) healthy donor (HD; n = 14) BM samples were studied by next-generation flow (NGF) to simultaneously assess measurable residual disease (MRD) and residual normal B-cell populations. BM hemodilution was detected in 41 out of 177 (23%) patient samples, leading to lower total B-cell, B-cell precursor (BCP) and normal plasma cell (nPC) counts. Among MM BM, decreased percentages (vs. HD) of BCP, transitional/naive B-cell (TBC/NBC) and nPC populations were observed at diagnosis. BM BCP increased after induction therapy, whereas TBC/NBC counts remained abnormally low. At day+100 postautologous stem cell transplantation, a greater increase in BCP with recovered TBC/NBC cell numbers but persistently low memory B-cell and nPC counts were found. At the end of therapy, complete response (CR) BM samples showed higher CD19(-) nPC counts vs. non-CR specimens. MRD positivity was associated with higher BCP and nPC percentages. Hemodilution showed a negative impact on BM B-cell distribution. Different BM B-cell regeneration profiles are present in MM at diagnosis and after therapy with no significant association with patient outcome

    Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC)

    Get PDF
    Here, we investigated for the first time the frequency and number of circulating tumor plasma cells (CTPC) in peripheral blood (PB) of newly diagnosed patients with localized and systemic plasma cell neoplasms (PCN) using next-generation flow cytometry (NGF) and correlated our findings with the distinct diagnostic and prognostic categories of the disease. Overall, 508 samples from 264 newly diagnosed PCN patients, were studied. CTPC were detected in PB of all active multiple myeloma (MM; 100%), and smoldering MM (SMM) patients (100%), and in more than half (59%) monoclonal gammopathy of undetermined significance (MGUS) cases (p < 0.0001); in contrast, CTPC were present in a small fraction of solitary plasmacytoma patients (18%). Higher numbers of CTPC in PB were associated with higher levels of BM infiltration and more adverse prognostic features, together with shorter time to progression from MGUS to MM (p < 0.0001) and a shorter survival in MM patients with active disease requiring treatment (p <= 0.03). In summary, the presence of CTPC in PB as assessed by NGF at diagnosis, emerges as a hallmark of disseminated PCN, higher numbers of PB CTPC being strongly associated with a malignant disease behavior and a poorer outcome of both MGUS and MM
    corecore