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Abstract
Here, we investigated for the first time the frequency and number of circulating tumor plasma cells (CTPC) in
peripheral blood (PB) of newly diagnosed patients with localized and systemic plasma cell neoplasms (PCN) using
next-generation flow cytometry (NGF) and correlated our findings with the distinct diagnostic and prognostic
categories of the disease. Overall, 508 samples from 264 newly diagnosed PCN patients, were studied. CTPC were
detected in PB of all active multiple myeloma (MM; 100%), and smoldering MM (SMM) patients (100%), and in more
than half (59%) monoclonal gammopathy of undetermined significance (MGUS) cases (p <0.0001); in contrast, CTPC
were present in a small fraction of solitary plasmacytoma patients (18%). Higher numbers of CTPC in PB were
associated with higher levels of BM infiltration and more adverse prognostic features, together with shorter time to
progression from MGUS to MM (p <0.0001) and a shorter survival in MM patients with active disease requiring
treatment (p ≤ 0.03). In summary, the presence of CTPC in PB as assessed by NGF at diagnosis, emerges as a hallmark of
disseminated PCN, higher numbers of PB CTPC being strongly associated with a malignant disease behavior and a
poorer outcome of both MGUS and MM.

Introduction
Plasma cell neoplasms (PCN) are a heterogeneous

group of diseases characterized by the clonal expansion of
terminally-differentiated plasma cells (PC)1–4. Whereas

monoclonal gammopathy of undetermined significance
(MGUS) and smoldering multiple myeloma (SMM)
represent pre-malignant phases of the disease with pro-
gressively higher degree of bone marrow (BM) involve-
ment and relatively low rates of malignant transformation
(i.e., 1 and 10% per year, respectively5–7), multiple mye-
loma (MM) is an active malignancy usually associated
with end-organ damage requiring therapy, and potential
for transformation into PC leukemia (PCL)1,8,9. In turn,
solitary plasmacytoma (SP) consists of a localized accu-
mulation of tumor (mono) clonal PC (TPC) in a specific
tissue area, without evidence for systemic disease10,11, but
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a rate of transformation to MM of ~ 15%–50%, depending
on the primary localization of the tumor (e.g., soft-tissue
vs. bone plasmacytoma, respectively)12,13.
Despite BM is the most frequently involved tissue in

PCN9,14,15, and a close interaction with the BM micro-
environment is required for long-term persistence of
normal plasma cells (NPC) and TPC16–18, previous stu-
dies have recurrently shown involvement of peripheral
blood (PB) in a substantial fraction of patients15,19–24.
However, the frequency of PB involvement depends on
the sensitivity of the methods used and the specific
diagnostic subtype of PCN15,19–23. Thus, PB involvement
by circulating TPC (CTPC) increases from MGUS -19 to
37%- to MM -50 to 75%-19,24–26, and PCL (100%)8,27,
depending on whether immunocytochemistry or con-
ventional 4–8-color flow cytometry are used, respectively.
Despite such variability and the relatively low sensitivity

of the methods used so far, the presence of CTPC in PB of
newly diagnosed MGUS and SMM patients has been
associated with an increased risk of progression to
MM20,21,25–29, and within MM with an adverse out-
come14,30, both when evaluated at diagnosis and after
therapy31–33. Recently, a next-generation flow cytometry
(NGF) approach has been established for high-sensitive
minimal residual disease (MRD) monitoring in the BM of
MM patients, after therapy34,35. However, no study has
investigated so far whether NGF also increases the fre-
quency of detection of very low levels of PB involvement
by CTPC in newly diagnosed PCN patients, and its
potential prognostic impact.
Here, we investigated for the first time the frequency

and number of CTPC in PB of 264 newly diagnosed
patients with localized (i.e., SP) and systemic (i.e., MGUS,
SMM, and MM) PCN using NGF34, and correlated our
findings with the distinct diagnostic and prognostic
categories of the disease.

Patients and methods
Patients and samples
Overall, 508 samples -264 PB and 244 paired BM

samples- from 264 patients (53% males and 47% females;
median age of 69 years, ranging from 28 to 97 years) with
newly diagnosed PCN, were studied. In parallel, 71 PB and
12 BM samples from sex- and age-matched healthy
donors (HD) were also investigated. Patients were classi-
fied according to the International Myeloma Working
Group (IMWG) criteria36 into: 150 MGUS, 97 multiple
myeloma patients (72 MM and 25 SMM) and, 17 SP
patients (Supplemental Table 1). Four MM patients pre-
sented with >1 focal lesion associated with multiple
osteolytic lesions (CRAB criteria) but minimal BM
involvement by PC on cytomorphology (percentage of
BMPC of 2%, 3%, 7%, and 17%, respectively) (Supple-
mental Table 2); hereafter, these four cases are referred to

as macrofocal MM (macrofocalMM)37–39. MM and SMM
that progressed to MM were both uniformly treated
according to the Spanish PETHEMA protocols40,41.
Written informed consent was given by each individual
prior to entering the study according to the Declaration of
Helsinki, and the study was approved by the local ethics
committees. All samples were received from the different
participating centers (USAL/HUSA, UNAV, CAS, CHN,
HULB, HVN) and centrally processed at either USAL or
UNAV within 24 h after they had been collected. None of
the samples received was inadequate for further staining
and processing.

Risk-stratification of MGUS, SMM, and MM patients
MGUS patients were stratified by the Mayo Clinic

index42 into: score 0, 52 cases; score 1, 54; score 2, 40; and
score 3, 3 patients. Most MGUS patients (89%) showed <
95% TPC within the overall BMPC compartment43. In
turn, SMM patients were stratified into risk-groups by
both the Mayo Clinic42 (score 0, 7 cases; score 1, 13; and,
score 2, 5 patients) and the Spanish prognostic indices43

(score 0, 2 patients; score 1, 8; and, score 2, 12 cases); due
to the low number of cases, we grouped them into just
two groups: standard/low (score 0–1) vs. high (score 2)
risk cases. Finally, MM patients were classified by the
Revised International Staging System (R-ISS)44 into stage
I (n= 12), stage II (n= 29), and stage III (n= 24) patients.
In the remaining few cases, enough data was not available.

Immunophenotypic studies
PB (median volume: 5.1 mL; range: 2.1–12.8 mL) and

BM-aspirated (100 μL) samples were collected in tubes
containing EDTA and processed using the EuroFlow
bulk-lysis, surface membrane (Sm)-only and Sm-plus
cytoplasmic (Cy) staining procedures34. Overall, ≥ 10 ×
106 PB and ≥ 1 × 106 BM cells/tube were stained with the
2-tube/8-color EuroFlow-IMF MM MRD antibody panel,
as described elsewhere34 (Supplemental Materials and
Supplemental Table 3). Stained cells were measured in
FACSCanto II flow cytometers -Becton/Dickinson Bios-
ciences (BD), San Jose, CA- using the FASCDiva software
(BD). The percentage of immunophenotypically NPC and
TPC was calculated from both the whole sample cellu-
larity and from the PB and BM PC compartments. In
addition, PB absolute NPC and CTPC counts, were
determined using a dual-platform approach45. For flow
cytometry data analysis, the Infinicyt software (version 2.0;
Cytognos SL, Salamanca, Spain) was used. Antigen
expression levels were specifically evaluated for PB and
BM TPC, and they were expressed as median fluorescence
intensity values (MFI; arbitrary units scaled from 0 to
262,144). The limit of detection of the NGF approach
used in both PB and BM was set at ≥ 20 tumor plasma cell
events, following previously established criteria34,46.
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Statistical methods
For all statistical analyses the Statistical Package for

Social Sciences (SPSS version 23; IBM, Armonk, NY) was
used. To assess the statistical significance of differences
observed between two or more than two groups, either
the Mann–Whitney U (unpaired variables) or the Wil-
coxon tests (paired variables), and the Kruskal–Wallis test
were used, respectively. Receiver operating characteristic
(ROC) curve analysis was applied to define the most
accurate cutoff value to discriminate between MGUS and
MM cases, based on the absolute number of CTPC in PB.
Correlation studies were performed using the (two-sided)
Spearman’s rho (ρ) for non-parametric paired data. The
Kaplan–Meier method and either the (two-sided) log-
rank or the post-hoc tests were used to plot and compare
time to progression (TTP), progression-free survival (PFS)
and overall survival (OS) curves between two or more
than two groups, respectively. Progression was defined as
transformation of MGUS into SMM or MM, and of SMM
into MM. TTP, OS, and PFS were calculated as the time
from diagnosis to disease progression, to death by any
reason, and either to disease progression or death by any
reason, respectively. Statistical significance was set at p-
values < 0.05.

Results
Distribution of normal and tumor PC in PB
Most PCN patients -185/264 (70%)- showed CTPC in

PB. The frequency of cases in which CTPC were detected
in PB progressively increased (p <0.05) from SP patients
(18%) and macrofocalMM (25%), to MGUS (59%), and
both SMM (100%) and MM (100%) cases (Fig. 1a). In
parallel, progressively higher numbers (p <0.05) of CTPC
in PB were found from SP and macrofocalMM patients
(median in both groups: <0.001 CTPC/μL) to MGUS
(median: 0.008 CTPC/μL), SMM (median: 0.16 CTPC/μL)
and MM (1.9 CTPC/μL)- (Fig. 1b and Supplemental Table
4).
In turn, NPC were detected in PB of all healthy donors

(median: 1.9 NPC/μL) and, at lower (p <0.001) numbers,
also in all PCN patients (median: 1.0 NPC/μL). In more
detail, significantly decreased NPC counts were found in
PB of MGUS (p <0.001) and SMM (p= 0.01), but not in
SP, macrofocalMM and MM cases who had normal (p>
0.05 vs. HD) NPC levels (Fig. 1c and Supplemental Table
5). This altered distribution of PB CTPC and NPC
translated into a progressively increased median percen-
tage of CTPC within the whole PB PC compartment from
SP and macrofocalMM (0%) to MGUS (0.8%), SMM
(15.8%), and MM (47.9%) (p < 0.05; Fig. 1d and Supple-
mental Table 4).
Of note, a strong (non-linear) correlation was observed

between the percentage of TPC from all BMPC and the
absolute number of PB CTPC in paired (PB and BM)

samples (ρ= 0.78; p < 0.001), TPC typically becoming
detectable in PB when they represented ≥ 60% of the
whole BMPC compartment (Fig. 2a). Of note, such cor-
relation remained significant even when patients with
localized disease (SP and macrofocalMM) (ρ= 0.54, p=
0.02), MGUS (ρ= 0.64, p< 0.0001), SMM (ρ= 0.51, p=
0.02) and MM (ρ= 0.55, p <0.0001), were analyzed
separately.
From the phenotypic point of view, although PB CTPC

showed a similar profile to that of BM TPC, they displayed
significantly lower (p < 0.05) expression levels of the
CD38, CD138, CD81, CD56, CD27, and Vs38c
maturation-associated markers, together with CD117 and
to a lesser extent also the Ki67-proliferation marker (p=
0.11), supporting a more immature and less proliferative
immunophenotype for paired PB vs. BM TPCs. Other
maturation-associated PC markers displayed either a
tendency towards lower (CD20, p= 0.14; and CD19, p=
0.06), or similar expression levels -CD45 (p= 0.47) and
Sm/CyIg light chains (SmIgκ/λ, p= 0.68; CyIgκ, p= 0.9;
CyIgλ, p= 0.7)- in BM vs. PB TPC (Fig. 2b and Supple-
mental Fig. 1).

Association between the number of PB CTPC and the
distinct diagnostic and prognostic categories of the
disease
ROC curve analysis showed that the most accurate (88%

accuracy) cutoff to discriminate between MGUS and MM
was at a PB count ≥ 0.058 CTPC/μL (p <0.001) (Table 1).
Within MGUS, cases at very low-risk of malignant
transformation as defined by both the Mayo Clinic index
(i.e., score 0) and the Spanish criteria (a percentage of
TPC within the total BMPC of <95%), less commonly
showed CTPC in PB: 35% vs. 72%, 70% and 100% for the
Mayo Clinic scores 1, 2, and 3, respectively (p ≤ 0.03; Fig.
3a), and 55% vs. 88% for MGUS cases with <95% vs. ≥ 95%
TPC/all BMPC (p= 0.01; Fig. 3c), respectively. Likewise,
the number of CTPC also increased significantly from
MGUS cases with Mayo Clinic score 0 to score 1, 2, and 3
cases (p ≤ 0.003; Fig. 3b) and in MGUS cases with ≥ 95%
vs. <95% TPC/all BMPC (p= 0.001; Fig. 3d). Interestingly,
despite the still limited follow-up, those MGUS cases with
higher absolute PB CTPC counts showed significantly
greater (p <0.0001) rates of progression to SMM and MM
-6/29 (21%) MGUS cases had progressed to SMM (n= 1)
and MM (n= 5) at 30 months- compared to MGUS cases
who showed low or undetectable CTPC in PB -0/115
cases (0%)- (Table 1 and Fig. 4a).
In contrast to MGUS, no significant differences in PB

CTPC counts were observed among SMM patients clas-
sified into different risk-groups by the Mayo Clinic
prognostic index (p= 0.2; Supplemental Fig. 2a) and the
Spanish score (p= 0.5; Supplemental Fig. 2b), which
could be due to the limited number of high-risk cases
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(score 2) analyzed and/or the independent value of the
two parameters. Despite this, at nearly 2 years, ~25% of
SMM with higher numbers of CTPC in PB ( ≥ 0.1 CTPC/
μL) had progressed to active MM vs. 0% among SMM
patients with lower PB CTPC counts, although differences
did not reach statistical significance (p= 0.2) (Fig. 4b).
Among MM, R-ISS stage III cases showed significantly

higher counts (Fig. 3e) of CTPC in PB (p= 0.001 and p=
0.004 vs. stage I and stage II cases, respectively). Inter-
estingly, MM cases with low numbers (i.e., <0.1 CTPC/μL
of PB- that would correspond to an MGUS-like pattern)
of CTPC, showed prolonged 2 years PFS and OS rates
(Figs. 4c, d, respectively): PFS of 94% vs. 40% (p= 0.014)
and OS of 100% vs. 67% (p= 0.03), respectively-.

Surprisingly, the longer PFS rates of MM cases who
showed lower numbers of CTPC in PB was independent
of response to therapy both when the IMWG complete
response (CR) status (p <0.0001; Fig. 4e) and the BM
MRD status (p= 0.02; Fig. 4f) were considered.

Discussion
In the past, progressively higher frequencies of MGUS

and MM patients presenting with CTPC in PB have been
reported in parallel to an increased sensitivity of the
techniques used (e.g., immunocytochemistry vs. conven-
tional 4- and 8- color flow)19,20,22–24,29,47,48. Here, we
applied for the first time the recently described high-
sensitive NGF method34 for the detection of CTPC in PB

Fig. 1 Frequency of CTPC by NGF in PB of newly diagnosed PCN patients and distribution of TPC and NPCand their ratios in HD vs PCN
patients. Boxes extend from the 25th to 75th percentiles; the line in the middle and vertical lines correspond to the median value and the 10th and
90th percentiles, respectively. *p < 0.05 for SMM and MM vs. all other groups; **p < 0.05 for MM vs. all other groups; #p < 0.05 for SP vs. MGUS; ¥p <
0.05 vs. HD; •p < 0.05 for MGUS vs. MM; §p < 0.05 for HD vs. all other groups. PC plasma cell, PCN PC neoplasms, CTPC circulating tumor PC, NPC
normal PC, SP solitary plasmacytoma, macrofocalMM macrofocal MM, MGUS monoclonal gammopathy of undetermined significance, SMM
smoldering MM, MM multiple myeloma, PB peripheral blood, NGF next-generation flow, HD healthy donors
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of a large cohort of newly diagnosed MGUS, SMM and
MM cases, including also for the first time, SP and mac-
rofocalMM patients. Overall, our results showed an up to
~2-fold increased frequency of cases presenting with
CTPC in PB by NGF vs. both immunocytochemistry and
conventional flow cytometry, among MGUS (59% vs.

19–37%)19,25, SMM (100% vs. 15–50%)29,49 and MM
(100% vs. 50–73%)19,25,26. In contrast, only a small per-
centage of SP and macrofocalMM had detectable CTPC
in PB. Altogether, these results confirm and extend on
previous observations indicating that the presence of
CTPC in PB is usually associated with systemic disease
(i.e., MGUS, SMM and MM), higher numbers of PB
CTPC within patients with systemic disease reflecting a
more malignant clinical behavior19,22,50, while it is a rare
finding among tissue-localized PC tumors (e.g., SP and
macrofocalMM)14. In line with these findings, the overall
number of PB CTPC as assessed by NGF also increased
progressively from SP and macrofocalMM to MGUS,
SMM, and MM, the number instead of the presence vs.
absence of CTPC providing an accurate discrimination
between MGUS and MM in the great majority of patients.
Altogether, these findings would support further evalua-
tion of the benefit of including PB CTPC counts in new
minimally invasive (i.e., PB-based) diagnostic algorithms,
to distinguish between MGUS and MM; alternatively, it
might be used as a prognostic factor in both diseases, as
discussed below. Although next-generation sequencing
approaches were not explored in parallel to NGF in our
cases, previous reports from the literature suggest a
similar sensitivity (i.e., detection of 1 CTPC in 106 total
cells; 0.0001%) but a slightly lower applicability (n= 44/46
patients; 96%)51,52.
Previous studies based on less sensitive approaches

indicated that the presence of CTPC in PB and/or their

Fig. 2 Correlation between the number and immunophenotype of tumor PCs in paired PB and BM samples from newly diagnosed PCN
patients. Correlation between the percentage of TPC from all BMPC and the absolute PB CTPC counts in paired BM and PB samples are shown in a,
while the correlation between median fluorescence intensity (MFI) levels of expression of individual phenotypic markers in paired BM TPC vs. PB
CTPC are displayed in b. In a, dots are colored per diagnostic category as follows: SP patients are color-coded as purple circles, macrofocalMM as light
blue circles, MGUS cases are represented as green circles, SMM as orange circles, and MM as red circles. The dotted line represents the percentage of
BM TPC above, which CTPC are usually detected in PB of PCN patients (91% vs. 9% cases with CTPC were found for patients above and below the
line, respectively). In b, individual phenotypic markers are color-coded as follows: CD38, dark blue; CD56, dark green; CD45, light purple; CD19, dark
purple; CD117, pink; CD81, gray; CD138, light blue; CD27, yellow; CyKappa, orange; CyLambda; brown; Vs38c, light green; SmKappa+ SmLambda,
black; Ki67, red; and, CD20, blue. PB peripheral blood, BM bone marrow, PC plasma cell, TPC tumor PC, CTPC circulating tumor PC, NPC normal PC,
PCN PC neoplasms, MFI median fluorescence intensity, SP solitary plasmacytoma, macrofocalMM macrofocal MM, MGUS monoclonal gammopathy
of undetermined significance, SMM smoldering MM, MM multiple myeloma

Table 1 Most accurate cutoff to discriminate between
MM and MGUS cases based on the absolute number of PB
circulating tumor PC

Variable No. of CTPC/μL of PB

Cutoff value 0.058 CTPC/μL

Sensitivity 80%

Specificity 80%

AUC 88%

Positive predictive value (%) 65%

Negative predictive value (%) 90%

No. of MGUS cases below cutoff/total (%) 120/150 (80%)**

No. of MM cases above cutoff/total (%) 55/68 (81%)

False-positive cases (%) 30/150 (20%)

False-negative cases (%) 13/68 (19%)

PB peripheral blood, PC plasma cell, CTPC circulating tumor PC, MGUS
monoclonal gammopathy of undetermined significance, MM symptomatic
multiple myeloma, AUC area under the curve, No. number.
*p <0.0001. **6/30 (20%) MGUS cases above the cutoff have progressed to MM
after a median follow-up of 17 months
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Fig. 3 (See legend on next page.)
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number, are both associated with (i) an increased risk of
transformation of MGUS to MM20,23 and (ii) the outcome
of SMM and MM, when assessed both at diag-
nosis22,29,47,48,53 and after therapy21,31–33. Despite the still
relatively limited number of patients investigated per
diagnostic category and the short median follow-up, our
results confirm and extend on these findings. Thus,
MGUS showing higher numbers of PB CTPC displayed
shorter TTP to MM, while in SMM, the prognostic
impact of the number of CTPC in PB appears to be more
limited and independent from both the Mayo Clinic and
the Spanish scoring systems. Nevertheless, the data on
SMM should be interpreted with caution due to the
limited number of these cases. Most interestingly, CTPC
counts in MM within the range of MGUS patients were
associated for the first time here, with a significantly
longer PFS and OS, independently of response to therapy
evaluated according to both the CR and MRD status.
Altogether, these results reinforce the notion that also
within MM, the presence of high number of CTPC is a
strong adverse prognostic factor, very low numbers of
CTPC in PB at diagnosis (i.e., similar to those observed in
MGUS), potentially contributing to the identification of
those few MM cases that show a good long-term out-
come, even when they do not reach BM MRD-negativity
or CR. Of note, preliminary results from our group further
show that the persistence/presence of CTPC in MM
patients who had undergone therapy, might be used as a
surrogate marker of BM MRD-positivity, since all treated
MM patients who showed CTPC after therapy, always
showed MRD+ of paired BM samples (data not shown).
Confirmation of these findings deserves further pro-
spective studies in large series of patients with longer
follow-up.
The precise biological significance of the presence and

the levels of CTPC in PB of MGUS and MM patients, still
remains largely unknow25,54. Classically, the presence of
CTPC in PB of MM has been viewed as a sign of dis-
semination of BM TPC into the circulation leading to
distinct tissue-homing patterns and the formation of new
PC tumors at distant (e.g., extramedullary) sites19,25,55.
However, recent studies show that compared to BM TPC,
PB CTPC display features of more quiescent cells with

greater resistance to chemotherapeutic agents and higher
potential for self-renewal, together with a potentially
more immature phenotype19,25,56,57, suggesting that PB
CTPC might constitute (and behave as) true MM stem
cells55,58,59.
Here, we confirm that PB CTPC from MM and MGUS

patients are immunophenotypically more immature than
their BM counterpart, as reflected by the expression of
significantly lower levels of (i) markers that are typically
acquired by PC during migration from secondary lym-
phoid tissues to the BM, such as CD38 and CD13860–64,
and (ii) adhesion molecules that anchor PC to stromal
structures such as CD56, CD81, and CD11760,65–67. Of
note, here we also show that PB CTPC display lower
expression levels of activation/differentiation-associated
antigens such as CD2767 and Vs38c, a rough endoplasmic
reticulum protein directly linked to a high rate of protein
(i.e., Ig) synthesis and secretion64,68,69. In line with pre-
vious observations, PB CTPC detected in this large series
of patients also tended to show lower levels of expression
(vs. BMPC) of the Ki67-proliferation associated mar-
ker9,25,55,56. In contrast, we did not found significant dif-
ferences as regards the phenotypic profile of PB vs. BM
TPC for other maturation-associated antigens previously
described to be aberrantly expressed by TPC in MM and
MGUS patients, such as CD19, CD20, CD45 and sm/
cyIg;49,62 this might be due to the fact that the pattern of
expression of these markers could more closely reflect
tumor phenotypes potentially associated with specific
genetic lesions -e.g., CD20 expression in cases carrying t
(11;14)-70 than actual maturation-associated phenotypes.
Despite all the above, CTPC in MM might also corre-
spond to an admixture of immature (i.e., potential stem
cell-like) TPC and more mature (i.e., BM derived) mye-
loma PC. In any case, if this whole concept about the
greater immaturity and stem cellness of PB vs. BM TPC
holds true, PB CTPC in MM and MGUS might play a key
role in disease dissemination throughout the BM (and in a
subset of MM patients, also to extramedullary sites), at
the same time they would be unable to appropriately
home in the BM when niches are (almost) full and
occupied by long-living (more mature) and growing
tumor PCs. Altogether, this might also contribute to

(see figure on previous page)
Fig. 3 Frequency and distribution of circulating tumor PC in PB of MGUS and MM patients classified into distinct risk-groups and clinical
stages, respectively. Frequency of MGUS patients presenting with CTPC and their absolute counts according to the Mayo Clinic prognostic index (a
and b, respectively; *p < 0.05 for Mayo Clinic prognostic score 0 vs. scores 1, 2, and 3) and the distribution of TPC within the whole BMPC
compartment (<95% vs. ≥ 95%) (c and d, respectively; **p < 0.05 vs. ≥ 95% TPC from all BM PC). In e, the absolute counts of PB TPC in MM patients
distributed according to the R-ISS stages is shown (#p < 0.05 for stage III vs. stages I and II). Boxes extend from the 25th to the 75th percentile values;
the line in the middle and vertical lines correspond to the median value and the 10th and 90th percentiles, respectively. PC plasma cell, TPC tumor
PC, CTPC circulating tumor PC, PB peripheral blood, BM bone marrow, MGUS monoclonal gammopathy of undetermined significance, MM multiple
myeloma, R-ISS revised international staging system

Sanoja-Flores et al. Blood Cancer Journal (2018)8:117 Page 7 of 11

Blood Cancer Journal



explain, at least in part, the non-linear (significant) cor-
relation here reported between the PB and BM TPC
burden. Similarly, it might also contribute to explain the
unexpectedly higher number of circulating NPC in PB in

more advanced vs. earlier stages of the disease (i.e., MM
vs. MGUS), despite an almost complete depletion of their
normal long-living BMPC counterpart is frequently
observed in association with low serum non-involved

Fig. 4 Impact of PB CTPC counts at diagnosis on the outcome of MGUS, SMM, and MM patients. TTP curves of MGUS and SMM grouped
according to the absolute number of PB CTPC are shown in a and b, respectively. c and d display PFS and OS curves of MM patients grouped
according to the absolute number of CTPC per μL of PB. In e and f PFS curves of treated myeloma (SMM and MM) patients grouped according to the
absolute count of CTPC in PB detected at diagnosis and either the standard IMWG response criteria (e) or the BM MRD status (f) reached after
therapy, are displayed, respectively. Patients who reached VGPR, CR/sCR or BM MRD-negativity after therapy and had low (black line) vs. high (blue
line) levels of PB CTPC at diagnosis, are included in clusters 1 and 2 from both e and f, respectively; in turn, patients who did not reach VGPR, CR/sCR
(e.g., PR, SD or PD) or BM MRD-negativity (e.g., BM MRD-positive cases) after therapy and had low (gray line) vs. high (red line) PB CTPC counts at
diagnosis, are included in clusters 3 and 4 in e and f, respectively. TTP time to progression, PFS progression-free survival, OS overall survival, PC plasma
cell, CTPC circulating tumor PC, NR not reached, PB peripheral blood MGUS monoclonal gammopathy of undetermined significance, SMM
smoldering MM, MM symptomatic multiple myeloma, IMWG International Myeloma Working Group, VGPR very good partial response, CR complete
response, sCR stringent complete response, PR partial response, SD stable disease, PD progressive disease
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immunoglobulin levels in MM, but not in MGUS. In such
case, progressive unspecific blockade of both TPC and
(recently produced short-lived) NPC into the BM, due to
the lack of (empty) PC niches occupied by TPC would
occur together with a parallel increase in PB of both
CTPC and NPC. The long-living nature of CTPC would
provide an advantage to this PC population over short-
lived NPC (recently produced in lymphoid tissues). This
would lead to selective accumulation of TPC in the BM
with progressive depletion of normal long-living PC in
BM. As a consequence, abnormally low serum antibody
production and immuneparesis would emerge as a hall-
mark of advanced disease43,71.
In summary, here we show that the presence of CTPC

in PB as assessed by NGF is a hallmark of both SMM and
MM and a highly frequent finding among MGUS, while
absent in most SP and macrofocalMM cases. Higher
numbers of CTPC in PB were strongly associated with
features of malignant disease, providing a powerful
minimally-invasive blood test to discriminate between
MGUS and MM at diagnosis and to identify both (i)
MGUS cases at high-risk of progression to MM, and (ii) a
small subset of MM patients with low number of CTPC
(within the range of MGUS cases) that display a sig-
nificantly longer survival despite not achieving BM MRD-
negativity or CR.
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