82 research outputs found

    Robust control volume finite element methods for numerical wave tanks using extreme adaptive anisotropic meshes

    Get PDF
    Multiphase inertia‐dominated flow simulations, and free surface flow models in particular, continue to this day to present many challenges in terms of accuracy and computational cost to industry and research communities. Numerical wave tanks and their use for studying wave‐structure interactions are a good example. Finite element method (FEM) with anisotropic meshes combined with dynamic mesh algorithms has already shown the potential to significantly reduce the number of elements and simulation time with no accuracy loss. However, mesh anisotropy can lead to mesh quality‐related instabilities. This article presents a very robust FEM approach based on a control volume discretization of the pressure field for inertia dominated flows, which can overcome the typically encountered mesh quality limitations associated with extremely anisotropic elements. Highly compressive methods for the water‐air interface are used here. The combination of these methods is validated with multiphase free surface flow benchmark cases, showing very good agreement with experiments even for extremely anisotropic meshes, reducing by up to two orders of magnitude the required number of elements to obtain accurate solutions

    Salerno's model of DNA reanalysed: could solitons have biological significance?

    Full text link
    We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether ``breather'' solitons could play a role in the facilitated location of promoters by RNA polymerase. In an effective potential formalism, we find excellent correlation between potential minima and {\em Escherichia coli} promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while ``flat'' regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein ``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J. Biol. Phys., accepted 02/09/0

    Downregulation of the Escherichia coli guaB promoter by FIS

    Get PDF
    The Escherichia coli guaB promoter (PguaB) regulates transcription of two genes, guaB and guaA, that are required for the synthesis of guanosine 5′-monophosphate (GMP), a precursor for the synthesis of guanine nucleoside triphosphates. Transcription from PguaB increases as a function of increasing cellular growth rate, and this is referred to as growth rate-dependent control (GRDC). Here we investigated the role of the factor for inversion stimulation (FIS) in the regulation of this promoter. The results showed that there are three binding sites for FIS centred near positions −11, +8 and +29 relative to the guaB transcription start site. Binding of FIS to these sites results in repression of PguaB in vitro but not in vivo. Deletion of the fis gene results in increased PguaB activity in vivo, but GRDC of PguaB is maintained

    Effect of Mitomycin - C and Triamcinolone on Preventing Urethral Strictures

    Get PDF
    Urethral stricture is a common disease with high recurrence rate. Several manipulations were defined to prevent the recurrence but the results were disappointing. This study aimed to evaluate the efficacy of triamcinolone and mitomycin-C on urethral stricture formation and their effect on inhibition of urethral fibrosis. A total of 24 New Zealand rabbits were divided into 3 groups. Urethras of rabbits were traumatized with pediatric resectoscope. Resection area was irrigated with 10mL saline, swapped with a cotton wool soaked with 0.5mg/mL MMC and injected by 40mg triamcinolone in groups 1, 2 and 3 respectively. Retrograde urethrogram was performed at 28th day of procedure and the urethra was removed for histopathologic evaluation. There were significant differences in urethral diameters and in lumen reduction rate between the control and study groups (p< 0.001). Compared to control group, all treatment groups showed mild fibrosis, less collagen bundle irregularity, and lower numbers of fibroblasts (p= 0.003). The Tunnel assay showed that the number of apoptotic cells in the submucosal connective tissue was quantitatively higher in control groups (p= 0.034). In the view of efficacy and safety, MMC and triamcinolone have the potential to replace the use of stents, clean intermittent catheterization, or long term catheters following internal urethrotomy. There were no statistically significant differences between two agents in terms of preventing urethral stricture formation in the present study. Mitomycin C and triamcinolone decreased the recurrence rates of urethral stricture

    Brain-wide representations of behavior spanning multiple timescales and states in C. elegans.

    Get PDF
    Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior

    Characterisation of silent and active genes for a variable large protein of Borrelia recurrentis

    Get PDF
    BACKGROUND: We report the characterisation of the variable large protein (vlp) gene expressed by clinical isolate A1 of Borrelia recurrentis; the agent of the life-threatening disease louse-borne relapsing fever. METHODS: The major vlp protein of this isolate was characterised and a DNA probe created. Use of this together with standard molecular methods was used to determine the location of the vlp1(B. recurrentis A1) gene in both this and other isolates. RESULTS: This isolate was found to carry silent and expressed copies of the vlp1(B. recurrentis A1) gene on plasmids of 54 kbp and 24 kbp respectively, whereas a different isolate, A17, had only the silent vlp1(B. recurrentis A17) on a 54 kbp plasmid. Silent and expressed vlp1 have identical mature protein coding regions but have different 5' regions, both containing different potential lipoprotein leader sequences. Only one form of vlp1 is transcribed in the A1 isolate of B. recurrentis, yet both 5' upstream sequences of this vlp1 gene possess features of bacterial promoters. CONCLUSION: Taken together these results suggest that antigenic variation in B. recurrentis may result from recombination of variable large and small protein genes at the junction between lipoprotein leader sequence and mature protein coding region. However, this hypothetical model needs to be validated by further identification of expressed and silent variant protein genes in other B. recurrentis isolates

    A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes

    Get PDF
    In recent years, more than 60 small RNAs (sRNAs) have been identified in the gram-positive human pathogen Listeria monocytogenes, but their putative roles and mechanisms of action remain largely unknown. The sRNA LhrA was recently shown to be a post-transcriptional regulator of a single gene, lmo0850, which encodes a small protein of unknown function. LhrA controls the translation and degradation of the lmo0850 mRNA by an antisense mechanism, and it depends on the RNA chaperone Hfq for efficient binding to its target. In the present study, we sought to gain more insight into the functional role of LhrA in L. monocytogenes. To this end, we determined the effects of LhrA on global-wide gene expression. We observed that nearly 300 genes in L. monocytogenes are either positively or negatively affected by LhrA. Among these genes, we identified lmo0302 and chiA as direct targets of LhrA, thus establishing LhrA as a multiple target regulator. Lmo0302 encodes a hypothetical protein with no known function, whereas chiA encodes one of two chitinases present in L. monocytogenes. We show here that LhrA acts as a post-transcriptional regulator of lmo0302 and chiA by interfering with ribosome recruitment, and we provide evidence that both LhrA and Hfq act to down-regulate the expression of lmo0302 and chiA. Furthermore, in vitro binding experiments show that Hfq stimulates the base pairing of LhrA to chiA mRNA. Finally, we demonstrate that LhrA has a negative effect on the chitinolytic activity of L. monocytogenes. In marked contrast to this, we found that Hfq has a stimulating effect on the chitinolytic activity, suggesting that Hfq plays multiple roles in the complex regulatory pathways controlling the chitinases of L. monocytogenes

    A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements

    Get PDF
    Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract and contributes to the differential expression levels of phase variant promoters with different numbers of repeats likely due to different spacing between operators. We show that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces NadA expression by inhibiting the DNA binding activity of the repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants and are likely due to differential RNA polymerase contacts leading to altered promoter activity. Our results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, both mediated by the NadR repressor, and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals

    Transcriptional control in the prereplicative phase of T4 development

    Get PDF
    Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity
    corecore