11 research outputs found

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    Get PDF
    IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutiùres syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate

    1–3 MRI/TC scans from subjects

    No full text
    <p>: 1) 454CCM patient harbouring the <i>de novo</i> and novel mutation p.E54Rfs*22. A) T1 sagittal image at 16 months showing a cavernous malformation with recent bleeding in the pons; B) T1 axial image at 25 months showing increased size of the pontine cavernous malformation with compression on the mesencephalon, the cisterna interpeduncularis and the cisterna pontis. 2) 321CCM patient harbouring the mutation p.R35X. A) Imaging characteristics of the CCM lesion (in the white circle) located at the left anterior temporal lobe: at CT scan the lesion is inhomogeneous due to haemorrhagic components, B and D) the haemorrhagic component is hyperintense both in T1 and in T2 sequences, C) contrast enhancement is absent, E) and at GET2* the lesion is hypointense due to the paramagnetic characteristics of the haemosiderin ring and of the clotted lesion content. F) Finally, other two lesions can be detected at other sites (arrows) in the same patient. 3) 344CCM patient harbouring the novel mutation p.R54X. A) MRI showed a right cortical and subcortical parietal hemorrhagic CCM lesion (arrow) and other non-hemorrhagic CCM lesions at different sites: bilateral temporal polar (not shown), B) left superior temporal sulcus (arrow) and right parietal (arrowhead), left insular and fronto-insular (not shown), C) left frontal parasagittal (arrow), subcortical frontal with small areas of vacuolization and microcalcification, left posteromedial thalamic (not shown).</p

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    No full text
    IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-GoutiĂšres syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate
    corecore