8 research outputs found

    Iterative orthology prediction uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase

    Get PDF
    BACKGROUND: Orthology is a central tenet of comparative genomics and ortholog identification is instrumental to protein function prediction. Major advances have been made to determine orthology relations among a set of homologous proteins. However, they depend on the comparison of individual sequences and do not take into account divergent orthologs. RESULTS: We have developed an iterative orthology prediction method, Ortho-Profile, that uses reciprocal best hits at the level of sequence profiles to infer orthology. It increases ortholog detection by 20% compared to sequence-to-sequence comparisons. Ortho-Profile predicts 598 human orthologs of mitochondrial proteins from Saccharomyces cerevisiae and Schizosaccharomyces pombe with 94% accuracy. Of these, 181 were not known to localize to mitochondria in mammals. Among the predictions of the Ortho-Profile method are 11 human cytochrome c oxidase (COX) assembly proteins that are implicated in mitochondrial function and disease. Their co-expression patterns, experimentally verified subcellular localization, and co-purification with human COX-associated proteins support these predictions. For the human gene C12orf62, the ortholog of S. cerevisiae COX14, we specifically confirm its role in negative regulation of the translation of cytochrome c oxidase. CONCLUSIONS: Divergent homologs can often only be detected by comparing sequence profiles and profile-based hidden Markov models. The Ortho-Profile method takes advantage of these techniques in the quest for orthologs

    Nod Factor-Induced Root Hair Curling: Continuous Polar Growth towards the Point of Nod Factor Application

    No full text
    A critical step in establishing a successful nitrogen-fixing symbiosis between rhizobia and legume plants is the entrapment of the bacteria between root hair cell walls, usually in characteristic 180° to 360° curls, shepherd's crooks, which are formed by the host's root hairs. Purified bacterial signal molecules, the nodulation factors (NFs), which are lipochitooligosaccharides, induce root hair deformation in the appropriate host legume and have been proposed to be a key player in eliciting root hair curling. However, for curling to occur, the presence of intact bacteria is thought to be essential. Here, we show that, when spot applied to one side of the growing Medicago truncatula root hair tip, purified NF alone is sufficient to induce reorientation of the root hair growth direction, or a full curl. Using wild-type M. truncatula containing the pMtENOD11::GUS construct, we demonstrate that MtENOD11::GUS is expressed after spot application. The data have been incorporated into a cell biological model, which explains the formation of shepherd's crook curls around NF-secreting rhizobia by continuous tip growth reorientation

    A Nonsymbiotic Root Hair Tip Growth Phenotype in NORK-Mutated Legumes: Implications for Nodulation Factor–Induced Signaling and Formation of a Multifaceted Root Hair Pocket for Bacteria

    No full text
    The Medicago truncatula Does not Make Infections (DMI2) mutant is mutated in the nodulation receptor-like kinase, NORK. Here, we report that NORK-mutated legumes of three species show an enhanced touch response to experimental handling, which results in a nonsymbiotic root hair phenotype. When care is taken not to induce this response, DMI2 root hairs respond morphologically like the wild type to nodulation factor (NF). Global NF application results in root hair deformation, and NF spot application induces root hair reorientation or branching, depending on the position of application. In the presence of Sinorhizobium meliloti, DMI2 root hairs make two-dimensional 180° curls but do not entrap bacteria in a three-dimensional pocket because curling stops when the root hair tip touches its own shank. Because DMI2 does not express the promoter of M. truncatula Early Nodulin11 (ENOD11) coupled to β-glucuronidase upon NF application, we propose a split in NF-induced signaling, with one branch to root hair curling and the other to ENOD11 expression

    Positioning of Nuclei in Arabidopsis Root Hairs: An Actin-Regulated Process of Tip Growth

    No full text
    In growing Arabidopsis root hairs, the nucleus locates at a fixed distance from the apex, migrates to a random position during growth arrest, and moves from branch to branch in a mutant with branched hairs. Consistently, an artificial increase of the distance between the nucleus and the apex, achieved by entrapment of the nucleus in a laser beam, stops cell growth. Drug studies show that microtubules are not involved in the positioning of the nucleus but that subapical fine F-actin between the nucleus and the hair apex is required to maintain the nuclear position with respect to the growing apex. Injection of an antibody against plant villin, an actin filament-bundling protein, leads to actin filament unbundling and movement of the nucleus closer to the apex. Thus, the bundled actin at the tip side of the nucleus prevents the nucleus from approaching the apex. In addition, we show that the basipetal movement of the nucleus at root hair growth arrest requires protein synthesis and a functional actin cytoskeleton in the root hair tube

    Calcium and ATP handling in human NADH:Ubiquinone oxidoreductase deficiency.

    Get PDF
    Contains fulltext : 80411.pdf (publisher's version ) (Closed access)Proper cell functioning requires precise coordination between mitochondrial ATP production and local energy demand. Ionic calcium (Ca(2+)) plays a central role in this coupling because it activates mitochondrial oxidative phosphorylation (OXPHOS) during hormonal and electrical cell stimulation. To determine how mitochondrial dysfunction affects cytosolic and mitochondrial Ca(2+)/ATP handling, we performed life-cell quantification of these parameters in fibroblast cell lines derived from healthy subjects and patients with isolated deficiency of the first OXPHOS complex (CI). In resting patient cells, CI deficiency was associated with a normal mitochondrial ([ATP](m)) and cytosolic ([ATP](c)) ATP concentration, a normal cytosolic Ca(2+) concentration ([Ca(2+)](c)), but a reduced Ca(2+) content of the endoplasmic reticulum (ER). Furthermore, cellular NAD(P)H levels were increased, mitochondrial membrane potential was slightly depolarized, reactive oxygen species (ROS) levels were elevated and mitochondrial shape was altered. Upon stimulation with bradykinin (Bk), the peak increases in [Ca(2+)](c), mitochondrial Ca(2+) concentration ([Ca(2+)](m)), [ATP](c) and [ATP](m) were reduced in patient cells. In agreement with these results, ATP-dependent Ca(2+) removal from the cytosol was slower. Here, we review the interconnection between cytosolic, endoplasmic reticular and mitochondrial Ca(2+) and ATP handling, and summarize our findings in patient fibroblasts in an integrative model

    Nitrogen-Fixing Plant-Microbe Symbioses

    No full text
    corecore