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Life cell microscopy
ires precise coordination betweenmitochondrial ATP production and local energy
demand. Ionic calcium (Ca2+) plays a central role in this coupling because it activates mitochondrial oxidative
phosphorylation (OXPHOS) during hormonal and electrical cell stimulation. To determine howmitochondrial
dysfunction affects cytosolic and mitochondrial Ca2+/ATP handling, we performed life-cell quantification of
these parameters in fibroblast cell lines derived from healthy subjects and patients with isolated deficiency of
the first OXPHOS complex (CI). In resting patient cells, CI deficiency was associated with a normal
mitochondrial ([ATP]m) and cytosolic ([ATP]c) ATP concentration, a normal cytosolic Ca2+ concentration
([Ca2+]c), but a reduced Ca2+ content of the endoplasmic reticulum (ER). Furthermore, cellular NAD(P)H
levels were increased, mitochondrial membrane potential was slightly depolarized, reactive oxygen species
(ROS) levels were elevated and mitochondrial shape was altered. Upon stimulation with bradykinin (Bk), the
peak increases in [Ca2+]c, mitochondrial Ca2+ concentration ([Ca2+]m), [ATP]c and [ATP]m were reduced in
patient cells. In agreement with these results, ATP-dependent Ca2+ removal from the cytosol was slower.
Here, we review the interconnection between cytosolic, endoplasmic reticular and mitochondrial Ca2+ and
ATP handling, and summarize our findings in patient fibroblasts in an integrative model.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
Mitochondria generate ATP by the oxidative phosphorylation
(OXPHOS) system located in the mitochondrial inner membrane
(MIM; [62]). When ATP requirement increases, for instance when cell
activity is triggered by a hormonal or electrical stimulus, OXPHOS-
derived ATP production is increased tomatch cellular energy demand.
A key player in this process is ionic calcium (Ca2+), which enters the
cytosol from the endoplasmic/sarcoplasmic reticulum (ER/SR) and/
or the extracellular medium. As a consequence, the cytosolic [Ca2+]
([Ca2+]c) is increased and Ca2+ is taken up by mitochondria to
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stimulate mitochondrial ATP production [56]. The ATP generated is
exported to the cytosol to fuel cytosolic ATP-demanding processes like
Ca2+ uptake in the ER by the sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA) and/or Ca2+ extrusion across the plasma membrane
(PM) by PMCa2+-ATPases (PMCAs). As a consequence, [Ca2+]c rapidly
returns to basal levels again [23,63,88]. In this review, we discuss the
interconnection between cytosolic, endoplasmic reticular and mito-
chondrial Ca2+ and ATP handling (section 2) and how mitochondrial
CI deficiency may affect this coupling (section 3).

2. Interconnection between cellular Ca2+ and ATP handling

2.1. Hormone-induced Ca2+ release from the endoplasmic reticulum

The ER not only plays a key role in lipid and protein synthesis,
folding and post-translational modification but also constitutes the
main intracellular Ca2+ storage organelle [3,54]. Inside the lumen of
the ER, part of the Ca2+ is free, whereas the remainder is bound to
Ca2+-binding proteins [24]. Estimation of the free luminal Ca2+

concentration ([Ca2+]ER) yielded values of 0.1–0.8 mM under resting
conditions [63]. One of the main ER Ca2+-binding proteins,
calreticulin, is also involved in quality control and folding of newly-
synthesized (glyco)proteins [72]. This suggests that these processes
are under regulatory control of [Ca2+]ER [6,10,26,48,66].

At any point in time, the total Ca2+ content of the ER (ERCa)
depends on the amount of ER Ca2+ binding proteins and the balance
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between passive Ca2+ leak, Ca2+ release via specific Ca2+ channels
such as the inositol 1,4,5 trisphosphate (InsP3) receptor (InsP3R) and
the activity of the ER Ca2+-pumps (SERCAs). Blocking of SERCA pumps
in the absence of extracellular Ca2+, induces an instantaneous
increase in [Ca2+]c in resting human skin fibroblasts [79], indicating
that maintenance of ERCa requires continuous SERCA action to
compensate for passive Ca2+ leak. It is likely that the ATP required
to fuel the SERCAs is generated by mitochondria operating in close
vicinity of the ER [54,56,63,88]. In this way, cells also maintain a low
resting [Ca2+]c, which is not only a prerequisite for Ca2+ signaling, but
also prevents possible toxic effects of Ca2+ like ATP precipitation, DNA
breakdown and activation of Ca2+-dependent proteases [47].

Many hormones trigger the production of InsP3 via binding to a
heterotrimeric G protein-activating receptor at the PM (Fig. 1B). The
GTP-bound α-subunit of the G protein then stimulates the action of
PM-bound phospholipase C beta (PLC-β), which cleaves phosphati-
dylinositol 4,5-bisphosphate (PtdInsP2) into 1,2-diacylglycerol (DAG),
an activator of protein kinase C (PKC), and InsP3. The latter molecule
diffuses into the cytosol to stimulate the InsP3R-mediated release of
Ca2+ from the ER into the cytosol. As a result, [Ca2+]c increases and, in
healthy cells, is rapidly returned to pre-stimulus levels by mainly
SERCA and/or PMCA action. In many cell types, hormone-induced cell
activation is mediated by periodic rises in, often local, [Ca2+]c to avoid
the toxic side effects of Ca2+ (see above) and, more importantly, to
allow high-fidelity signal transduction [18,25]. Thus, this oscillatory
signaling mode, as it is generally referred to, enables coding of the
signaling information in the frequency, amplitude and/or shape of the
[Ca2+]c rises and is, in general, only observed when low (physiolo-
gical) concentrations of hormone are used [6,35,36,69]. The InsP3R,
exists as homo and/or heterotetramers [49]. In mammals, three
InsP3R isoforms have been identified (InsP3R1, InsP3R2, InsP3R3) that
are regulated by [Ca2+]c, [Ca2+]ER, protein kinases and specific binding
proteins [21]. The latter include homer, protein 4.1N, huntingtin-
associated protein-1A, protein phosphatases (PPI and PP2A), RACK1,
Fig. 1. Interconnection between ER, cytosolic and mitochondrial Ca2+ and ATP handling. (A
human skin fibroblast (CT-5120) showing the close proximity of a mitochondrion and parts
Cartoon depicting the interconnection between Ca2+ and ATP homeostasis in the cytosol, E
ANT, adenine nucleotide translocase; [ATP]c, cytosolic ATP concentration; [ATP]m, mitochon
complex III; CIV, complex IV; CV, complex V; [Ca2+]c, cytosolic Ca2+ concentration; [C
concentration; DAG, diacylglycerol; G, G-protein; InsP3, inositol 1,4,5-trisphosphate; InsP3
mitochondrial outer membrane; PDHs, pyruvate dehydrogenases; PIP2, phosphatidylinositol
phospholipase C-β; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase.
ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT,
Na+/K+-ATPase, and ERp44. This suggests that InsP3Rs form macro
signal complexes that function as centers of signaling cascades [49].

2.2. The ER and mitochondria are in close vicinity

Evidence has been presented that at least part of the ER is in close
vicinity of mitochondria (Fig. 1A). This juxtaposition creates an ER–
mitochondrial ‘synapse’ that is thought to allow efficient exchange of
Ca2+ and metabolites [1,11,13,20,22,45,54,57,60,67]. However, there is
also evidence arguing against mitochondria-ER contacts being a
general Ca2+ shunting mechanism [58]. For instance, artificial
relocalization of mitochondria to the perinuclear region, which is
rich in ER, does not affect mitochondrial Ca2+ uptake in response to
stimulated Ca2+ release from internal stores. Additionally, mitochon-
dria are highly mobile in cells, suggesting that: (i) ER–mitochondrial
contacts are either formed between immobile parts of the ER and
immobile mitochondria, (ii) mitochondria-connected parts of the ER
move in parallel with mitochondria, or (iii) ER–mitochondrial
contacts only exist transiently [58]. Furthermore, mitochondria can
exist as small bean-shaped organelles and as more elongated tubular
structures. Moreover, they can form intricate (sub)reticula [4,39,73].
Therefore, nature, functionality and amount of ER–mitochondrial
contacts most probably depend on the type of cell and/or its
metabolic condition. Taken together, it appears that a close proximity
between ER and mitochondria alone is not sufficient for rapid Ca2+

transfer between the both organelles and that the latter requires
assembly of an appropriate molecular machinery [58]. In this respect,
recent evidence suggested that the ER–mitochondrial synapse is
maintained by 10–25 nm tethers, physically connecting both
organelles [13]. These tethers were shown to consist of the
mitochondrial outer membrane (MOM)-protein VDAC1 (voltage-
dependent anion channel 1 or porin), the chaperone glucose-related
protein 75 (grp75 or mitochondrial heat shock protein 70; mtHSP70),
) Contrast-optimized electron microscopy image of mitochondria in a typical healthy
of the rough ER (RER; inset). The scale bar indicates 1 μm (for details see: [40–42]. (B)
R and mitochondria during hormone-stimulation (see text for details). Abbreviations:
drial ATP concentration; BkR, bradykinin-receptor; CI, complex I; CII, complex II; CIII,
a2+]ER, endoplasmatic reticulum Ca2+ concentration; [Ca2+]m, mitochondrial Ca2+

R, inositol 1,4,5-trisphosphate receptor; MIM, mitochondrial inner membrane; MOM,
4,5-bisphosphate; PM, plasmamembrane; PMCA, plasmamembrane Ca2+-ATPase; PLCβ,
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and the InsP3R [67]. In agreement with its putative role in ER–
mitochondria tethering, overexpression of VDAC in HeLa cells and
skeletal myotubes enhanced the amplitude of the agonist-induced rise
in [Ca2+]m and shortened the delay between the increase in [Ca2+]c
and [Ca2+]m [55]. Functionally, VDAC-overexpressing cells were more
susceptible to ceramide-induced cell death, suggesting that increased
mitochondrial Ca2+ uptake stimulates the process of apoptosis.
Similarly, overexpression of a grp75 mutant lacking the mitochondrial
presequence also enhanced mitochondrial Ca2+ accumulation, imply-
ing that this protein plays a role in Ca2+ handling independent from
its chaperone activity in the mitochondrial matrix [67]. Other recent
evidence suggested that the ER protein sigma-1 receptor (Sig-1R),
implicated in neuroprotection, carcinogenesis, and neuroplasticity
and found to be located at the mitochondria-associated ER membrane
(MAM), senses [Ca2+]ER and might thus be involved in the regulation
of ER–mitochondria Ca2+ signals [28]. Finally, very recent evidence
implicated mitofusin 2, a mitochondrial dynamin-related protein
demonstrated to be enriched at the ER–mitochondria interface, in the
regulation of mitochondrial Ca2+ uptake. It was found that its down-
regulation disturbed ER–mitochondria interactions leading to a
decreased mitochondrial Ca2+ uptake in response to InsP3 generating
stimuli [46]. It appears that the distance between ER and mitochon-
drion, crucial for ER–mitochondrial Ca2+ transmission, is (co)
regulated by [Ca2+]c and determines the susceptibility to mitochon-
drial Ca2+ overload and opening of the mitochondrial permeability
transition pore [13]. Free (local) [Ca2+]cb100 nM favors ER–
mitochondria dissociation, whereas [Ca2+]cN1 μM favors close
association between these organelles [85]. This suggests that ER
subdomains are less closely associated with mitochondria in resting
cells, whereas association occurs during cell stimulation.

2.3. Mitochondrial Ca2+ uptake, release and ATP generation

During cell stimulation, cytosolic Ca2+ rapidly enters the
mitochondrial matrix by action of the Δψ-dependent mitochondrial
Ca2+ uniporter (MCU) leading to an increase in [Ca2+]m [54,56]. The
MCU is half-maximally activated at a [Ca2+]c of ∼10–20 μM and has a
maximal Ca2+ flux of ∼2·104 Ca2+·s−1 per MCU molecule [45]. The
close ER–mitochondrial juxtaposition allows the [Ca2+]c within the
Ca2+ microdomain (Fig. 1B) to become sufficiently high for MCU
activation. Using confocal imaging of Rhod-2-loaded HeLa cells,
Bootman et al. demonstrated that mitochondria will accumulate Ca2+

regardless whether it is released from the ER by InsP3, enters across
the PM or leaks from the ER [11]. However, in agreement with the
InsP3R being involved in ER–mitochondrial tethering (see above), the
rate of mitochondrial Ca2+ uptake was greatest for InsP3-evoked Ca2+

signals.
Interestingly, when glomerular afferent arteriolar smooth muscle

cells (PGASMC) were chronically pre-treated with Transforming
Growth Factor-β (TGF-β), subsequent hormone-induced [Ca2+]c and
[Ca2+]m rises were decreased [52]. Although TGF-β down-regulated
both InsP3R1 and InsP3R3, ER Ca2+ storage, mitochondrial distribu-
tion and ER–mitochondrial contacts were not affected. It was
concluded that TGF-β causes uncoupling of mitochondria from ER
Ca2+ release by decreasing the InsP3R-mediated Ca2+ efflux, thus
hampering the build-up of the [Ca2+]c within the ER–mitochondrial
Ca2+ microdomain.

The decay phase of [Ca2+]m is much slower than the MCU-
mediated rising phase, and is primarily mediated by Na+/Ca2+ (NCX)
exchange across the MIM. The NCX is thought to be electrogenic
because it exchanges 1 Ca2+ for 3 Na+with a Km for Na+ of 8 mM [45].
MCU stimulation by 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)tri-
sphenol (PPT) or kaempferol increased the histamine-induced ER
Ca2+ release in HeLa cells and fibroblasts [76]. This effect was
enhanced by simultaneous inhibition of NCX with the benzothiaze-
pine CGP37157, suggesting that mitochondrial Ca2+ uptake and
release control feedback inhibition of InsP3Rs within the ER–
mitochondrial Ca2+ microdomain (Fig. 1B). Interestingly, PPT and
kaempferol induced [Ca2+]c oscillations in previously silent fibro-
blasts. This suggests that also in the absence of hormone stimulation,
the occurrence of oscillatory Ca2+ signals depends on the rates of
mitochondrial Ca2+ uptake and release, which modulate InsP3R
activation. In HeLa cells, inhibition of mitochondrial NCX by
CGP37157 during histamine stimulation changed the pattern of
histamine-induced [Ca2+]c oscillations [29]. Similarly, CGP37157
increased the frequency of [Ca2+]c oscillations in human fibroblasts
with spontaneous activity and induced the generation of oscillations in
cells without spontaneous activity. These findings suggest that
mitochondrial NCX directly modulates InsP3-induced Ca2+ release
and thereby controls [Ca2+]c oscillations.

Within the mitochondrial matrix, an elevation in [Ca2+]m
stimulates respiration and increases mitochondrial [ATP] ([ATP]m)
[33,45,79,80,88]. Mitochondrial ATP production is carried out by the
OXPHOS system, which consists of five MIM-embedded multi-protein
complexes [62]. The system is primarily fueled by NADH and FADH2,
generated by the tricarboxylic acid (TCA) cycle. Electrons are
abstracted from NADH and FADH2 at complex I (CI or NADH:
Ubiquinone oxidoreductase; EC 1.6.5.3) and II (CII or succinate
dehydrogenase; EC 1.3.5.1), respectively, and donated to complex III
(CIII or ubiquinol cytochrome c reductase; EC 1.10.2.2) via the MIM-
bound electron transporter ubiquinone. Next, cytochrome c trans-
ports the electrons to complex IV (CIV or cytochrome c oxidase;
EC 1.9.3.1), where they are donated to molecular oxygen (O2) leading
to the formation of water (H2O). At CI, CIII and CIV protons are
translocated across the MIM to create a proton-motive force (PMF)
that consists of a chemical (ΔpH) and electrical component (Δψ). This
PMF is utilized at complex V (CV or ATP synthase; EC 3.6.3.14) to form
ATP from ADP and Pi.

Three key dehydrogenases of the TCA cycle (pyruvate dehydro-
genase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase),
as well as CV, are activated by Ca2+ [56,68]. Computational analysis
also predicts that multi-site OXPHOS activation is required for
efficient matching of mitochondrial ATP production with cellular
demand [43]. The Ka for activation of the TCA cycle dehydrogenases is
within the range of 0.7–1 μM [45], compatible with the observed
increases in [Ca2+]m [9,79].

Once produced, mitochondrial ATP is transported out of the
mitochondrion by the adenine nucleotide translocase (ANT; [34]).
This transporter exchanges ATP against ADP across the MIM and has
also been proposed to be involved in mitochondrial Ca2+ homeostasis.
The latter is illustrated by the fact that ANT overexpression reduced
the histamine-induced peak increase in [Ca2+]m in HeLa cells [87].
This effect was paralleled by alterations in mitochondrial shape and
also reduced ERCa, resulting in a small decrease in peak [Ca2+]c during
histamine stimulation.

Within the cytosol, the ATP generated is used to fuel, among
others, the SERCA and/or PMCA (Fig. 1B), which return [Ca2+]c to the
pre-stimulus level [54]. The [Ca2+]c in close vicinity of the SERCA/
PMCA also affects the action of these pumps. In this way, mitochon-
drial ATP production and Ca2+ uptake may exert local control on
PMCA action and SERCA activity in the adjacent ER [63].

3. ER, cytosolic and mitochondrial Ca2+ and ATP handling in
isolated complex I deficiency

3.1. Isolated complex I deficiency

CI is the largest OXPHOS complex (∼1 MDa) and constitutes the
entry point of electrons in the electron transport chain (ETC; [62]).
Structurally, CI is L-shaped and consists of 45 different subunits, 14 of
which are essential for catalytic function [8]. These ‘core’ subunits are
encoded by genes on both the mitochondrial (mtDNA) and nuclear



Fig. 2. Resting mitochondrial and cytosolic [ATP] in CI-deficient patient fibroblasts. (A)
Calibration of average luciferase (LUC) bioluminescence signals in the mitochondrial
matrix (mitLUC; closed symbols) and cytosol (cytLUC; open symbols) in a population
(25,000 cells) of healthy human skin fibroblast (CT-5120). Following application of the
LUC co-factor luciferin, a steady state level of bioluminesce was reached. This signal was
expressed as percentage of the maximal bioluminesce signal obtained after permea-
bilization of the cells with digitonin in the presence of a saturating [ATP] (10 mM). This
approach allowed comparison (see inset) of the resting [ATP] in the mitochondrion and
cytosol. Bioluminescence signals were recorded with a photomultiplier system as
described previously [79]. (B) Comparison of the resting [ATP] in the mitochondrial
matrix (closed bars) and cytosol (open bars) in control cells (CT) and 3 different patient
cell lines. Asterisks indicate significant differences with the indicated columns
(⁎pb0.05; ⁎⁎pb0.01). More details are given in the text and Table 1.
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DNA (nDNA). The seven mtDNA-encoded core subunits (ND1, ND2,
ND3, ND4, ND4L, ND5 and ND6) all are part of the membrane arm of
CI, whereas the nDNA-encoded ones (NDUFV1, NDUFV2, NDUFS1,
NDUFS2, NDUFS3, NDUFS7 and NDUFS8) are mainly localized in the
matrix-protruding arm of the complex. The remaining 31 subunits are
all nDNA-encoded and their function is largely unknown. In vivo
assembly of functional CI is thought to occur by stepwise combination
of pre-assembled modules at the MIM [14] and requires assistance of
assembly factors, six of which have currently been identified
(NDUFAF1/CIA30, NDUFAF2/B17.2L/NDUFA12L/Mimetin, C6orf66,
C8orf38, C20orf7 and Ecsit; [17,44,51,53,64,82,83]).

Deficiency of CI (OMIM 252010) was first described in humans
30 years ago [50]. A reduced enzyme activity of this complex, for
diagnostic purposes usually determined in skeletal muscle and
cultured skin fibroblasts, leads to multi-system disorders affecting
predominantly organs and tissues with a high-energy demand like
the brain, heart, and skeletal muscle [61]. Although patients with
isolated CI deficiency due to nDNA mutations may present with a
variety of signs and symptoms, Leigh disease is the most frequent,
accounting for almost half of the cases [32,44]. Leigh disease is an
early-onset (mostly during the first year of life) fatal neurodegen-
erative disorder that is typically characterized by symmetrical
lesions of necrosis and capillary proliferation in variable regions of
the central nervous system. Clinical signs and symptoms include
optic atrophy, ophthalmoparesis, muscular hypotonia, ataxia and
dystonia. In all cases, the disease is fatal (most children do not reach
the age of 1 year).

Currently, mutations in 12 different nDNA-encoded CI subunits
have been linked to isolated CI deficiency (NDUFS1, NDUFS2, NDUFS4,
NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NDUFA1, NDUFA2,
NDUFA8, NDUFA11; [5,19,30,32,44]). Additionally, pathological muta-
tions in five CI assembly factors (NDUFAF1/CIA30, NDUFAF2/B17.2L/
NDUFA12L/Mimetin, C6orf66, C8orf38 and C20orf7) have been
reported [2,17,44,51,53,59,64,83]. Currently, effective treatment stra-
tegies for isolated CI deficiency are lacking due to the limited insight
into its cytopathology. Therefore, in the past years, we systematically
investigated the possible consequences of nDNA-encoded CI muta-
tions in patient fibroblasts. In doing so, we found aberrations in Ca2+

and ATP homeostasis, ROS handling and mitochondrial morphology
(summarized in: [39,88]).

3.2. Mitochondrial Ca2+ and ATP handling in patient skin fibroblasts

Our previous studies with a cohort of skin fibroblast lines from
patients with isolated CI deficiency revealed that CI mutations
primarily lead to a reduced amount of fully assembled and
catalytically active CI by decreasing the rate of assembly and/or
disturbing the stability of the holo-complex [41,74,77].

Quantification of ERCa in resting cells, revealed that the ER
contained less Ca2+ in patient cells, which displayed a reduced peak
increase in [Ca2+]c, [Ca2+]m and [ATP]m upon stimulation with the
InsP3-generating hormone bradykinin (Bk; see below and:
[79,80,88]). This suggests that [ATP]c might be too low in resting
patient cells to allow sufficient ATP fueling of the SERCAs. To
investigate this possibility, we developed a protocol for quantification
of [ATP]c and [ATP]m, based on a previously described method for
endothelial cells (supplement of [71]). Briefly, the bioluminescent ATP
sensor luciferase (LUC) was expressed in the cytosol (cytLUC) or
mitochondrial matrix (mitLUC; using the COX8 mitochondrial target-
ing sequence) of skin fibroblasts from a healthy subject and 3 patients
harboring a mutation in one of the nDNA-encoded CI genes (NDUFS4,
NDUFS7, NDUSF8; Table 1). MitLUC and cytLUC were introduced into
the cells using the baculoviral system [12], made suitable for protein
expression in human skin fibroblasts [79]. Luciferase catalyzes the
luminescent reaction of luciferin with ATP and oxygen. Fig. 2A shows
that upon addition of luciferin, the bioluminescence signal gradually
increased to a steady level, reflecting the resting ATP concentration.
Subsequent permeabilization by digitonin in the presence of a
saturating concentration of ATP yielded the maximal signal which
was used for normalization of the resting signal. As depicted in Fig. 2B,
the resting values of [ATP]c and [ATP]m did not significantly differ
between healthy and patient fibroblasts. Although the resting values
of [ATP]m and [ATP]c were not altered in CI-deficient patient
fibroblasts, it cannot be excluded that local decreases in [ATP]C, in
the ER–mitochondrial Ca2+ microdomain, occur and are responsible
for the observed reduction in resting ERCa (Fig. 1B).

Concerning the Ca2+ buffering capacity in the ER lumen, Western
blot analysis of whole-cell homogenates showed that the calreticulin
protein amount was increased rather than decreased in typical patient



Fig. 3. Cell biological consequences of isolated CI deficiency in patient fibroblasts. Typical aberrations observed in fibroblasts of patients with isolated CI deficiency obtained by
quantitative life-cell microscopy and bioluminometry (see text for details).
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fibroblasts. Because calreticulin is the predominant Ca2+ binding
protein of the ER, this finding disfavors the idea that the reduction in
resting ERCa is due to a decrease in ER Ca2+ buffering capacity [88].
Table 1
Characteristics of typical complex I-deficient fibroblast cell lines.

Parameter CT-5120

Subunit n.a.
Subunit features n.a.
Mutation n.a.
CI activity 113
PN 17
Clinical phenotype n.a.

Resting Cell
ΔΨa 100±0.2 (1033)
[NAD(P)H]ma 100±2 (143)
ATP: [ATP]mb 100±5 (22)
ATP: [ATP]cb 100±9 (20)
Calcium: [Ca2+]ca 100±4 (32)
Calcium: ERCaa 100±1 (81)
ROS: Eta 100±1 (526)
ROS: CM-DCFa 100±2 (412)
ROS: Mitochondrial mitochondrial roGFP1a 38±2 (42)
ROS: Cytosolic cytosolic roGFP1a 15±1 (23)
ROS: lipid peroxidationa 100±3 (99)
Shape: Formfactor formfactor (F)a 100±1 (1200)
Shape: mitos per cell (Nc)a 100±2 (1200)

Stimulated Cell
Calcium: peak [Ca2+]ca 100±3 (32)
Calcium: peak [Ca2+]mb 100±2 (11)
ATP: peak [ATP]mb 100±2 (31)
Calcium: Ca2+ removala 100±5 (32)

The data for healthy control (CT) and CI-deficient patient (P) cell lines, except [ATP]m and [AT
numbers indicate the designation of the cell line within the Nijmegen Centre for Mitochon
CI activity is expressed as percentage of the lowest value in a collection of control cell lines
Nijmegen Centre for Mitochondrial Disorders.
Clinical phenotype: HCEM, hypertrophic cardiomyopathy and encephalomyopathy; L, Leigh
Resting Cell: ΔΨ, mitochondrial membrane potential measured with tetramethyl rhodamin
[78]; ATP, see Fig. 2 and main text; calcium: pre-stimulatory fura-2 ratio and ER calcium
chloromethyl dichlorofluorescein formation [38,78]; roGFP1, oxidation status (% oxidized)
detected with C11-BODIPY581/591 [78]; Shape: formfactor is a combined measure of mitoch
Stimulated Cell: peak values of [Ca2+]c and [Ca2+]m measured with fura-2 and mitochon
targeted luciferase [80,81]. The rate of cytosolic Ca2+ removal is determined using the fura-2
Statistics: the data are expressed in percentage of the average control value±standard erro
Abbreviations: CI, complex I; n.a., not appropriate; n.d., not determined; NDUFS, NADH deh

a The number between brackets indicates the numbers of cells analyzed on at least 2 dif
b The number between brackets indicates the number of independent assays on at least
Measurement of ER Ca2+ uptake under saturating [ATP], revealed that
the maximum SERCA-pump capacity was similar in control and
patient fibroblasts. Additionally, the amount of SERCA2b protein, was
P-4827 P-5175 P-6603

NDUFS4 NDUFS7 NDUFS8
Accessory Core Core
R106X V122M R94C
58 68 18
7⁎ 15⁎ 15⁎
L/LL L/LL L/LL

n.d. 91±1 (384) 89±1 (121)
n.d. 112±7 (40) 170±6 (62)
83±5 (6) 115±7 (17) 84±6 (3)
118±8 (6) 123±8 11) 115±3 (3)
109±5 (23) 109±5 (21) 106±6 (20)
n.d. 73±2 (16) 85±6 (17)
196±6 (93) 151±5 (94) 222±7 (147)
n.d. 212±15 (76) 275±20 (117)
n.d. 37±3 (20) 37±3 (34)
n.d. 16±1 (22) 24±2 (29)
n.d. 87±3 (99) 111±3 (90)
96±7 117±3 (214) 120±4 (69)
177±25 (20) 98±10 (214) 167±9 (69)

82±4 (23) 80±4 (21) 91±4 (20)
n.d. 76±5 (3) 89±3 (5)
33±5 (3) 57±5 (3) 74±1 (6)

169±12 (23) 164±10 (21) 134±6 (20)

P]c in resting cells, was taken from previous studies (summarized in: [39] and [88]). The
drial Disorders.
[62]; PN: passage number, an asterisk indicates the passage number after arrival at the

syndrome; LL, Leigh-like syndrome.
e methyl ester (TMRM; [15,42]); NAD(P)Hm, mitochondrial NAD(P)H autofluorescence
content (ERCa; [80,81]); ROS: Et, rate of ethidium formation [78], CM-DCF, rate of
of cytosolic and mitochondria-targeted redox-sensitive GFP [78]; Lipid peroxidation,
ondrial length and degree of branching [42].
dria-targeted aequorin, respectively [80,81]; Peak ATP measured using mitochondria-
signal and given by the time constant of a mono-exponential fit (larger means slower).
r. Values in bold are significantly different from control value (pb0.05).
ydrogenase ubiquinone flavoprotein; Nc, number of mitochondria per cell.
ferent days.
2 different days.



1135F. Valsecchi et al. / Biochimica et Biophysica Acta 1792 (2009) 1130–1137
not altered in typical patient cells [88], further supporting the
conclusion that ERCa is decreased because of reduced SERCA fueling
by mitochondrial ATP.

Typically, when patient cells were stimulated with Bk, transient
increases in [Ca2+]c, [Ca2+]m and [ATP]m were observed, which
peaked at lower values than in healthy control cells [79,80,88].
Regression analysis of the patient data, revealed that the peak values
of [Ca2+]c, [Ca2+]m and [ATP]m were linearly correlated, suggesting
that the magnitude of the [Ca2+]c transient is the primary determi-
nant of the [Ca2+]m-induced increase in [ATP]M. This is compatible
with a mechanism in which [Ca2+]m stimulates mitochondrial ATP
production [33]. Given the fact that mitochondrial Ca2+ uptake is Δψ-
dependent [56,75,79], the linear relationship between peak [Ca2+]c
and peak [Ca2+]m furthermore suggests that the small Δψ depolariza-
tion observed in patient fibroblasts does not significantly contribute to
the observed alterations in Bk-stimulatedmitochondrial Ca2+ and ATP
handling. Quantification of the decay rate of the [Ca2+]c transient
revealed a halftime (t1/2) that was inversely proportional to the peak
[ATP]m, suggesting that mitochondria-generated ATP serves to fuel
SERCA-mediated Ca2+ reuptake by the ER [80,81,88].

Recent studies using isolated cardiomyocytes of mice with tissue-
specific knockout of mitochondrial transcription factor A (Tfam),
revealed that action potential-mediated [Ca2+]c transients, measured
with the fluorescent indicator Fluo-3, were smaller and faster than
control [89]. Moreover, both the Ca2+ content of the sarcoplasmic
reticulum and the expression level of the Ca2+-binding protein
calsequestrin-2 were found to be reduced in Tfam knockout hearts.
These results indicate that although the consequences of Tfam
ablation for the stimulus-induced [Ca2+]c increase in mice cardio-
myocytes resemble those in CI-deficient human skin fibroblasts, the
underlying mechanism is different.

3.3. Cell biological consequences of complex I deficiency: an integrative
model

In addition to Ca2+ and ATP handling, we also have investigated
the consequences of isolated CI deficiency on CI assembly, OXPHOS
protein expression, mitochondrial membrane potential (Δψ), reactive
oxygen species (ROS) levels, thiol redox status, lipid peroxidation,
NAD(P)H level, mitochondrial morphology, motility and intra-matrix
protein diffusion (Fig. 3; [37,40,41,77,79,88]).

In patient cells (see Table 1 for typical examples), reduced
expression of the CI holo-enzyme was paralleled by a (slightly)
depolarized Δψ, and increased ROS and NAD(P)H levels. Because the
reduction in CI levels was inversely proportional to cellular ROS levels,
it appears that decreasing numbers of active complexes generate
increasing amounts of ROS not because of the presence of a mutated
subunit but as a consequence of a decrease in cellular CI activity. The
alternative explanation that increasing numbers of partially assembled
complexes are responsible for the observed increase in ROS production
is not supported by our finding that chronic rotenone treatment
increased rather than decreased the amount of fully assembled CI [77].

In a recent study, we investigated the effect of chronic treatment
with Trolox, a water-soluble derivative of vitamin E, on cellular
ROS levels and expression and activity of fully assembled CI [41].
It was found that ROS levels were dramatically reduced and CI
expression and activity were variably increased in healthy and patient
fibroblasts. This suggests that the amount of active CI is under
regulatory control of the cell's oxidative balance. By ratioing the
Trolox-induced increase in CI activity and CI amount, we determined
whether newly generated CI holo-complexes were catalytically active.
The results obtained revealed that apart from the amount also the
intrinsic activity of the complex can be significantly decreased in
nDNA-inherited isolated CI deficiency. The finding that Trolox
treatment increased the amount of CI might provide an experimental
basis for the use of antioxidants to mitigate the deficiency. However,
it is to be expected that such a treatment is only beneficial to patients
with a predominant expression rather than intrinsic catalytic defect of
the complex.

As discussed above (section 3.2), the CI deficiency-induced
mitochondrial dysfunction leads to a reduced ERCa in resting cells,
most probably by reduced ATP fueling of SERCAs. Alternatively, ERCa
in patient cells might be reduced by functional impairment of the
SERCAs and/or InsP3 receptor by increased ROS levels [7,31,65,86].
However, maximal SERCA-pump capacity in patient fibroblasts was
normal (section 3.2) and ERCa displayed a strong linear correlation
with the Bk-induced InsP3R-mediated peak increase in [Ca2+]c,
disfavoring a role for InsP3R malfunction [80]. Given the established
signaling role of Ca2+ in the ER lumen, the reduced ERCa might affect
intra-ER and/or cytosolic signal transduction pathways. In this
respect, it has been proposed that intra-ER Ca2+ not only functionally
regulates Ca2+-binding chaperones responsible for intra-ER protein
folding, but also the expression of these chaperones once released
from the ER by cell stimulation [27]. Similarly, ERCa might regulate
proteins involved in ER stress responses like the UPR (unfolded
protein response) and ERAD (ER-associated degradation). To deter-
mine if such mechanisms are operational in CI-deficient patient
fibroblasts, further investigations are needed.

It is likely that the elevated ROS/NADH(P)H triggers activation of
adaptive responses [16,70]. This might be related to the observed
changes in mitochondrial shape, motility, intra-matrix protein diffu-
sion and mtHSP70 expression in patient cells [4,39,40]. We previously
argued that these alterations reflect a switch to a (more) glycolytic
mode of ATP generation in patient fibroblasts [40]. Similarly, in 143B
osteosarcoma cybrid cells harboring pathogenic mtDNA point muta-
tions in tRNALeu, the major OXPHOS defect was efficiently compen-
sated by increased anaerobic glycolysis, so that the total ATP
production rate was preserved [84]. The latter is compatible with
the normal resting [ATP]m and [ATP]c observed in our patient cells
(section 3.2). The 143B cybrid cells displayed an increased ROS
production, which was not paralleled by the induction of antioxidant
defense systems or substantial oxidative damage. Comparison of a
cohort of 10 healthy and 10 CI-deficient patient cell lines also revealed
no detectable differences in thiol redox status, glutathione/glu-
tathione disulfide content, or extent of lipid peroxidation [78]. This
indicates that fibroblasts of patients with isolated CI deficiency
maintain their thiol redox status despite the marked increase in ROS
production. Similar to our patient cells, Δψ was depolarized in 143B
cybrid cells and this was associated with a disturbed mitochondrial
Ca2+ homeostasis [84].

In summary, the data presented in this review highlight that
mutations in nDNA-encoded CI subunits have 4 major consequences:
(i) they reduce the amount and activity of fully assembled and active
CI, (ii) they increase ROS levels, (iii) they cause aberrations in Ca2+/
ATP handling and, (iv) they trigger an adaptive response. Currently,
strategies targeting these consequences in order to mitigate CI
deficiency are under way in our laboratory.
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