240 research outputs found
Efficient Implicit Parallel Patterns for Geographic Information System
International audienceWith the data growth, the need to parallelize treatments become crucial in numerous domains. But for non-specialists it is still difficult to tackle parallelism technicalities as data distribution, communications or load balancing. For the geoscience domain we propose a solution based on implicit parallel patterns. These patterns are abstract models for a class of algorithms which can be customized and automatically transformed in a parallel execution. In this paper, we describe a pattern for stencil computation and a novel pattern dealing with computation following a pre-defined order. They are particularly used in geosciences and we illustrate them with the flow direction and the flow accumulation computations
Immunologic Investigations of T-Cell Regulation of Human IgE Antibody Secretion and Allergic Responses
The pathophysiology of allergic disease is multifactorial, involving an intricate network of interactions among cells, mediators, and cytokines. Substantial progress has been made in defining the role of antigen-specific T cells and cytokines in the regulation of immunoglobulin E (IgE) synthesis and the atopic diseases. The development of antigen-specific T-cell lines and clones has facilitated efforts to characterize human T-cell subsets and their cytokine repertoires. Molecular methods currently available include techniques for the quantitative analysis of cytokine gene expression and secretion from activated T cells ex vivo as well as in tissues. The availability of these newly developed techniques has become essential to the investigation of the pharmacologic regulation of T cells and cytokines both in vitro and in vivo. Future investigations will contribute to our understanding of the differential regulation of T-cell subsets and their relationships to allergic diseases, ultimately leading to a better understanding of the molecular pathogenesis of allergic diseases and the design of more effective therapeutic interventions
An Hierarchical Labeling Technique for Interactive Computation of Watersheds
International audience—The watershed computation is a prevalent task in the geographical information systems. It is used, among other purposes, to forecast the pollutant concentration and its impact on the water quality. The algorithm to compute the watershed can be hard to parallelize and with the increasingly data growth, the need for parallel computation increases. In this paper we propose a new method to parallelize the watershed computation. Our algorithm is decomposed into two tasks, the parallel watershed segmentation into a hierarchy that allows in a second task to retrieve randomly large watersheds at run-time in interactive time
Contemporary Art Therapists: Study of Identity Within Artmaking
This paper highlights the design and results of a research study conducted by graduate art therapy students that surveyed professional art therapists and the role that personal and clinical art making has in their practice. The study included a mixed-method approach that involved a survey of 88 graduates from art therapy programs, interviews, the creation of art by art therapists, and the creation of art responses by the graduate researchers. The researchers analyzed the data from the surveys and interviews through thematic coding and identified common themes that reflected the research questions: What is the relationship between personal art making and the development of the art therapist and What supports and barriers exist for art therapists to engage in an active art practice within and outside of clinical practice? The themes reflected the importance of having a personal art practice as an art therapist, the relationship between personal work and its impact with clients, the challenge of advocating for the understanding and inclusion of art therapy in professional spaces, and the career long evolution of the relationship between the artist and art therapist identity. These findings emphasize the barriers and supports associated with the art therapist identity
Rolipram, a Phosphodiesterase 4 Inhibitor, Stimulates Inducible cAMP Early Repressor Expression in Osteoblasts
Phosphodiesterase (PDE) 4 inhibitors have been shown to induce the cAMP-mediated signaling pathway by inhibiting cAMP hydrolysis. This study investigated the effect of a PDE4 inhibitor on the expression of the inducible cAMP early repressor (ICER), which is an endogenous inhibitor of CRE-mediated transcription, in osteoblastic cells. RT-PCR analysis revealed that rolipram, a PDE4 inhibitor, stimulates the ICER mRNA in a dose dependent manner. The induction of ICER mRNA expression by rolipram was suppressed by the inhibitors of protein kinase A (PKA) and p38 MAPK, suggesting the involvement of PKA and p38 MAPK activation in ICER expression by rolipram. It was previously shown that rolipram induced the expression of TNF-related activation-induced cytokine (TRANCE, also known as RANKL, ODF, or OPGL) in osteoblasts. This paper provides evidences that a transcriptional repressor like ICER might modulate TRANCE mRNA expression by rolipram in osteoblasts
Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro
BACKGROUND AND PURPOSEMucociliary malfunction occurs in chronic obstructive pulmonary disease (COPD) and compromised functions of ciliated bronchial epithelial cells may contribute to this. Cigarette smoke, a major risk factor for COPD, impairs ciliary beat frequency (CBF). cAMP augments CBF. This in vitro study addressed, in differentiated, primary human bronchial epithelial cells, whether roflumilast N-oxide, a PDE4 inhibitor, (i) augments CBF; (ii) prevents the reduction in CBF induced by cigarette smoke extract (CSE); and (iii) protects against the loss of the ciliated phenotype following long-term CSE exposure.EXPERIMENTAL APPROACHAir-liquid interface cultured human bronchial epithelial cells were incubated with roflumilast N-oxide and exposed to CSE. CBF was assessed by digital high speed video microscopy (DHSV). Ciliated cells were characterized by β-tubulin IV staining and analyses of Foxj1 and Dnai2 mRNA and protein (real-time quantitative PCR, Western blotting).KEY RESULTSRoflumilast N-oxide concentration-dependently triggered a rapid and persistent increase in CBF and reversed the decrease in CBF following CSE. Long-term incubation of bronchial epithelial cells with CSE resulted in a loss in ciliated cells associated with reduced expression of the ciliated cell markers Foxj1 and Dnai2. The PDE4 inhibitor prevented this loss in the ciliated cell phenotype and the compromised Foxj1 and Dnai2 expression. The enhanced release of IL-13 following CSE, a cytokine that diminishes the proportion of ciliated cells and in parallel, reduces Foxj1 and Dnai2, was reversed by roflumilast N-oxide.CONCLUSION AND IMPLICATIONSRoflumilast N-oxide protected differentiated human bronchial epithelial cells from reduced CBF and loss of ciliated cells following CSE
Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation
BACKGROUND: Theophylline has been used widely as a bronchodilator for the treatment of bronchial asthma and has been suggested to modulate immune response. While the importance of macrophages in asthma has been reappraised and emphasized, their significance has not been well investigated. We conducted a genome-wide profiling of the gene expressions of macrophages in response to theophylline. METHODS: Microarray technology was used to profile the gene expression patterns of macrophages modulated by theophylline. Northern blot and real-time quantitative RT-PCR were also used to validate the microarray data, while Western blot and ELISA were used to measure the levels of IL-13 and LTC4. RESULTS: We identified dozens of genes in macrophages that were dose-dependently down- or up-regulated by theophylline. These included genes related to inflammation, cytokines, signaling transduction, cell adhesion and motility, cell cycle regulators, and metabolism. We observed that IL-13, a central mediator of airway inflammation, was dramatically suppressed by theophylline. Real-time quantitative RT-PCR and ELISA analyses also confirmed these results, without respect to PMA-treated THP-1 cells or isolated human alveolar macrophages. Theophylline, rolipram, etazolate, db-cAMP and forskolin suppressed both IL-13 mRNA expression (~25%, 2.73%, 8.12%, 5.28%, and 18.41%, respectively) and protein secretion (<10% production) in macrophages. These agents also effectively suppressed LTC4 expression. CONCLUSION: Our results suggest that the suppression of IL-13 by theophylline may be through cAMP mediation and may decrease LTC4 production. This study supports the role of theophylline as a signal regulator of inflammation, and that down regulation of IL-13 by theophylline may have beneficial effects in inflammatory airway diseases
Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury
<p>Abstract</p> <p>Background</p> <p>Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.</p> <p>Methods</p> <p>Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously) and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue.</p> <p>Results</p> <p>Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day) significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH).</p> <p>Conclusion</p> <p>Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary inflammatory response, fibrin deposition and RVH, and stimulates alveolarization. Initiation of sildenafil treatment after hyperoxic lung injury and continued during room air recovery improves alveolarization and restores pulmonary angiogenesis and RVH in experimental BPD.</p
- …