305 research outputs found
High density plasma gun generates plasmas at 190 kilometers per second
Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved
Gas Filled Coaxial Accelerator with Compression Coil
A self-energized plasma compressor which compresses plasma discharged from a coaxial plasma generator. The device includes a helical shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that generates a force which acts radially upon the plasma. A seal is carried on the end of the coaxial plasma generator for containing gas therein. As the plasma is accelerated out the outer end of the generator, it forces the gas outwardly also compressing such. Beads are carried adjacent the small end of the helical shaped coil for being accelerated to hypervelocities by the plasma and gas. As a result of utilizing gas in the coaxial plasma generator, such minimizes ablation of the beads as well as accelerates such to higher velocities
Observational evidence of the influence of Antarctic stratospheric ozone variability on middle atmosphere dynamics
Modeling results have suggested that the circulation of the stratosphere and mesosphere in spring is strongly affected by the perturbations in heating induced by the Antarctic ozone hole. Here using both mesospheric MF radar wind observations from Rothera Antarctica (67°S, 68°W) as well as stratospheric analysis data, we present observational evidence that the stratospheric and mesospheric wind strengths are highly anti-correlated, and show their largest variability in November. We find that these changes are related to the total amount of ozone loss that occurs during the Antarctic spring ozone hole and particularly with the ozone gradients that develop between 57.5°S and 77.5°S. The results show that with increasing ozone loss during spring, winter conditions in the stratosphere and mesosphere persist longer into the summer. These results are discussed in the light of observations of the onset and duration of the Antarctic polar mesospheric cloud seaso
Recommended from our members
Characteristics and sources of gravity waves observed in noctilucent cloud over Norway
Four years of noctilucent cloud (NLC) images from an automated digital camera in Trondheim and results from a ray-tracing model are used to extend the climatology of gravity waves to higher latitudes and to identify their sources during summertime. The climatology of the summertime gravity waves detected in NLC between 64 and 74° N is similar to that observed between 60 and 64° N by Pautet et al. (2011). The direction of propagation of gravity waves observed in the NLC north of 64° N is a continuation of the north and northeast propagation as observed in south of 64° N. However, a unique population of fast, short wavelength waves propagating towards the SW is observed in the NLC, which is consistent with transverse instabilities generated in situ by breaking gravity waves (Fritts and Alexander, 2003). The relative amplitude of the waves observed in the NLC Mie scatter have been combined with ray-tracing results to show that waves propagating from near the tropopause, rather than those resulting from secondary generation in the stratosphere or mesosphere, are more likely to be the sources of the prominent wave structures observed in the NLC. The coastal region of Norway along the latitude of 70° N is identified as the primary source region of the waves generated near the tropopause
Microtesla MRI of the human brain combined with MEG
One of the challenges in functional brain imaging is integration of
complementary imaging modalities, such as magnetoencephalography (MEG) and
functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive
superconducting quantum interference devices (SQUIDs) to directly measure
magnetic fields of neuronal currents, cannot be combined with conventional
high-field MRI in a single instrument. Indirect matching of MEG and MRI data
leads to significant co-registration errors. A recently proposed imaging method
- SQUID-based microtesla MRI - can be naturally combined with MEG in the same
system to directly provide structural maps for MEG-localized sources. It
enables easy and accurate integration of MEG and MRI/fMRI, because microtesla
MR images can be precisely matched to structural images provided by high-field
MRI and other techniques. Here we report the first images of the human brain by
microtesla MRI, together with auditory MEG (functional) data, recorded using
the same seven-channel SQUID system during the same imaging session. The images
were acquired at 46 microtesla measurement field with pre-polarization at 30
mT. We also estimated transverse relaxation times for different tissues at
microtesla fields. Our results demonstrate feasibility and potential of human
brain imaging by microtesla MRI. They also show that two new types of imaging
equipment - low-cost systems for anatomical MRI of the human brain at
microtesla fields, and more advanced instruments for combined functional (MEG)
and structural (microtesla MRI) brain imaging - are practical.Comment: 8 pages, 5 figures - accepted by JM
Dynamic and Chemical Aspects of the Mesospheric Na âWallâ Event on 9 October 1993 During the ALOHA Campaign
On October 9, 1993, observations were made from the National Center for Atmospheric Research Electra aircraft during a flight from Maui, Hawaii, toward a low-pressure system NW of the island, a flight of 7 hours in total. The leading edge (wall) of a bright airglow layer was observed 900 km NW of Maui at 0815 UT, which was traveling at 75 m sâ1 toward the SE, reaching Haleakala, Maui, about 3.25 hours later [see Swenson and Espy, 1995]. An intriguing feature associated with the event was the large increase in the mesospheric Na column density at the wall (âŒ180%). The enhancement was distributed over a broad region of altitude and was accompanied by significant perturbations in the Meinel (OH) and Na D line airglow emission intensities, as well as the temperature. This paper describes an investigation of the combined measurements from the aircraft and at Haleakala, including an analysis of the event using a gravity wave dynamic model. The modeled atmospheric variations associated with the leading edge of the âwallâ wave are then applied to models of the neutral and ionic chemistry of sodium in order to establish whether the enhancement was caused by the release of atomic Na from a local reservoir species, as opposed to redistribution by horizontal convection. The most likely explanation for the Na release was the neutralization of Na+ ions in a sporadic E layer that was first transported downward by a large amplitude (â10%) atmospheric gravity wave and then vertically mixed as the wave pushed the atmosphere into a super adiabatic state with associated convective instabilities and overturning
Comparison of the sensitivity of a 24 h-shell vial assay, and conventional tube culture, in the isolation of Herpes simplex virus â 1 from corneal scrapings
BACKGROUND: Herpes simplex keratitis is a sight threatening ocular infection. A rapid and specific diagnosis is essential for the institution of specific antiviral therapy and to avoid complications that can arise from misdiagnosis and inappropriate treatment. Though a variety of techniques are available, isolation of Herpes simplex virus 1 (HSV-1) in culture provides the most reliable and specific method, and is considered as the gold standard in laboratory diagnosis of herpes simplex keratitis. We report a comparative study of the sensitivity of a 24 h-shell vial assay and conventional tube culture in the isolation of HSV-1 from corneal scrapings. METHODS: A total of 74 corneal scrapings obtained from 74 patients with a clinical suspicion of herpes simplex keratitis submitted for the isolation of HSV-1, were simultaneously inoculated into shell vial and tube cultures employing the vero cell line. Shell vial and tube cultures were terminated at 24 h and fifth day respectively. Isolation of HSV-1 was confirmed employing an indirect immunofluorescence assay. RESULTS: HSV-1 was isolated from 24/74 (32.4%) specimens employing both the methods. Sensitivity of both the techniques were found to be similar (20/24, 83.3%) (P = 1.0). CONCLUSION: A 24 h-shell vial assay is a rapid alternative technique in comparison to the time consuming conventional tube cultures for the isolation of HSV-1, especially from corneal scrapings for the laboratory diagnosis of herpes simplex keratitis
Characteristics and sources of gravity waves observed in noctilucent cloud over Norway
Four years of noctilucent cloud (NLC) images from an automated digital
camera in Trondheim and results from a ray-tracing model are used to extend
the climatology of gravity waves to higher latitudes and to identify their
sources during summertime. The climatology of the summertime gravity waves
detected in NLC between 64 and 74° N is similar to that
observed between 60 and 64° N by Pautet et al. (2011).
The direction of propagation of gravity waves observed in the NLC north of
64° N is a continuation of the north and northeast propagation as
observed in south of 64° N. However, a unique population of fast,
short wavelength waves propagating towards the SW is observed in the NLC,
which is consistent with transverse instabilities generated in situ by breaking
gravity waves (Fritts and Alexander, 2003). The relative amplitude of the waves
observed in the NLC Mie scatter have been combined with ray-tracing results
to show that waves propagating from near the tropopause, rather than those
resulting from secondary generation in the stratosphere or mesosphere, are
more likely to be the sources of the prominent wave structures observed in
the NLC. The coastal region of Norway along the latitude of 70° N
is identified as the primary source region of the waves generated near the
tropopause
- âŠ