52 research outputs found

    A New Species of River Dolphin from Brazil or:How Little Do We Know Our Biodiversity

    Get PDF
    True river dolphins are some of the rarest and most endangered of all vertebrates. They comprise relict evolutionary lineages of high taxonomic distinctness and conservation value, but are afforded little protection. We report the discovery of a new species of a river dolphin from the Araguaia River basin of Brazil, the first such discovery in nearly 100 years. The species is diagnosable by a series of molecular and morphological characters and diverged from its Amazonian sister taxon 2.08 million years ago. The estimated time of divergence corresponds to the separation of the Araguaia-Tocantins basin from the Amazon basin. This discovery highlights the immensity of the deficit in our knowledge of Neotropical biodiversity, as well as vulnerability of biodiversity to anthropogenic actions in an increasingly threatened landscape. We anticipate that this study will provide an impetus for the taxonomic and conservation reanalysis of other taxa shared between the Araguaia and Amazon aquatic ecosystems, as well as stimulate historical biogeographical analyses of the two basins

    Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees

    Get PDF
    International audienceThe Bay of Biscay and the Pyrenees correspond to a Lower Cretaceous rift system including both oceanic and hyperextended rift domains. The transition from preserved oceanic and rift domains in the West to their complete inversion in the East enables us to study the progressive reactivation of a hyperextended rift system. We use seismic interpretation, gravity inversion, and field mapping to identify and map former rift domains and their subsequent reactivation. We propose a new map and sections across the system illustrating the progressive integration of the rift domains into the orogen. This study aims to provide insights on the formation of hyperextended rift systems and discuss their role during reactivation. Two spatially and temporally distinct rift systems can be distinguished: the Bay of Biscay-Parentis and the Pyrenean-Basque-Cantabrian rifts. While the offshore Bay of Biscay represent a former mature oceanic domain, the fossil remnants of hyperextended domains preserved onshore in the Pyrenean-Cantabrian orogen record distributed extensional deformation partitioned between strongly segmented rift basins. Reactivation initiated in the exhumed mantle domain before it affected the hyperthinned domain. Both domains accommodated most of the shortening. The final architecture of the orogen is acquired once the conjugate necking domains became involved in collisional processes. The complex 3-D architecture of the initial rift system may partly explain the heterogeneous reactivation of the overall system. These results have important implications for the formation and reactivation of hyperextended rift systems and for the restoration of the Bay of Biscay and Pyrenean domain

    Geometry and kinematic evolution of a long-living foreland structure inferred from field data and cross section balancing, the Sainte-Victoire System, Provence, France

    No full text
    International audienceThe Sainte-Victoire System (SVS) is a key area to understand how the shortening is accommodated in outer foreland of the Pyrenean-Provence orogen between Late Cretaceous and Eocene. Structural data, growth strata and fault slip analysis, and four balanced cross sections are used to decipher the along-strike geometry, deformational characteristics and kinematics of the SVS. The SVS is divided into two structural domains separated by a regional relay zone: the eastern domain is governed by a N-vergent thin-skinned tectonic style above Triassic series and the western domain, by a mixed S-vergent thick- and thin-skinned tectonic style with tectonic inversion of Late Paleozoic-Triassic half grabens. Growth strata indicate that the eastern SVS grew during Danian as a result of shortening transfer from the southern Arc Basin. In contrast, the western SVS is an independent structure which has recorded the early stage (∼83 Ma) of shortening and focused continuous deformation during ∼40 Myr. The shallow N-S shortening is ∼5 km (∼25%) and ∼8 km (∼34%) in the western and eastern SVS, respectively. At a regional scale, the tectonic inversion of the SVS and the Arc Basin recorded a deep shortening of the order of 15-18 km (∼34%). Although the shortening magnitude of the SVS remains small, other structures similar to the SVS were synchronously active across foreland basin, suggesting a significant amount of cumulated shortening. This outer foreland shortening may account for a non-negligible amount of deformation at the Pyrenean-Provence orogen scale

    Reconstruction of the Provence Chain evolution, southeastern France

    No full text
    International audienceThe Provence fold-and-thrust belt forms the eastern limit of the Pyrenean orogenic system in southeastern France. This belt developed during the Late Cretaceous-Eocene Pyrenean-Provence compression and was then deformed by Oligocene-Miocene Ligurian rifting events and Neogene to present-day Alpine compression. In this study, surface structural data, seismic profiles, and crustal-to-lithospheric-scale sequentially balanced cross sections contribute to the understanding of the dynamics of the Provence Chain and its long-term history of deformation. Balanced cross sections show that the thrust system is characterized by various structural styles, including deep-seated basement faults that affect the entire crust, tectonic inversions of Paleozoic-Mesozoic basins, shallower decollements within the sedimentary cover, accommodation zones, and salt tectonics. This study shows the prime control of the structural inheritance over a long period of time on the tectonic evolution of a geological system. This includes mechanical heterogeneities, such as Variscan shear zones, reactivated during Middle Cretaceous Pyrenean rifting between Eurasia and Sardinia. In domains where Mesozoic rifting is well marked, inherited basement normal faults and the thermally weak crust favored the formation of an inner thick-skinned thrust belt during Late Cretaceous-Eocene contraction. Here 155 km (similar to 35%) of shortening was accommodated by inversion of north verging crustal faults, north directed subduction of the Sardinia mantle lithosphere, and ductile thickening of the Provence mantle lithosphere. During the Oligocene, these domains were still predisposed for the localized faulting of the Ligurian basin rifting and the seafloor spreading

    Cross-sectional anatomy and geodynamic evolution of the Central Pontide orogenic belt (northern Turkey)

    Get PDF
    International audienceGeophysical data allowed the construction of a ~250-km-long lithospheric-scale balanced cross section of the southern Black Sea margin (Espurt et al. 2014). In this paper we combine structural field data, stratigraphic data, and fault kinematics analyses with the 70 km-long onshore part of the section to reconstruct the geodynamic evolution of the Central Pontide orogen. These data reveal new aspects of the structural evolution of the Pontides since the Early Cretaceous. The Central Pontides is a doubly vergent orogenic wedge that results from the inversion of normal faults. Extensional subsidence occurred with an ENE-trend from Aptian to Paleocene in a forearc setting. We infer that the Black Sea back-arc basin also opened during this period, which was also the period of subduction of the Tethys Ocean below the Pontides. As in the Western Pontides, the Cretaceous-Paleocene subsidence was interrupted from Latest Albian to Coniacian time by uplift and erosion that was probably related to a block collision and accretion in the subduction zone. The restoration of the section to its pre-shortening state (Paleocene) shows that fault-related subsidence locally reached 3600 m within the forearc basin. Structural inversion occurred from Early Eocene to Mid-Miocene as a result of collision and indentation of the Pontides by the Kırşehir continental block to the south, with 27.5 km (~28%) shortening along the section studied. The inversion was characterized by NNE-trending shortening that predated the Late Neogene dextral escape of Anatolia along the North Anatolian Fault and the modern stress field characterized by NW-trending compression within the Eocene Boyabat basin
    • …
    corecore