448 research outputs found

    Evolution of the microstructure of cobalt during diffusionless transformation cycles

    Get PDF
    Differential scanning calorimetry and transmission electron microscopy have been used to study thermal fatigue due to diffusionless phase transformation cycling in pure cobalt. Thermal cycling through the allotropic (hcp ↔ fcc) transformation results in a temperature shift of the calorimetric peaks, which means a delay of the transformation. In addition, the transformation enthalpy, which is greater on heating than on cooling, diminishes when the number of transformation cycles increases. This is interpreted as being due to an evolution of the microstructure. Transmission electron microscopy shows the appearance of transformation-induced defects, which are mainly sessile dislocations. We can interpret the calorimetry results (enthalpy evolution and transformation delay) as due to the interactions between interface dislocations and these sessile dislocation

    STUDY OF INDUSTRIAL ALUMINUM WIRE AFTER COLD WIRE DRAWING AND HEAT TREATMENTS

    Get PDF
    The effect of plastic deformation by wire drawing on structure and properties of an industrial electric aluminum wire has been studied. Some heat treatments were applied on the drawn wires. For this investigation, different techniques were used: optical microscopy, transmission electron microscopy, hardness measurements and differential scanning calorimetry. We have observed texture structure along axis wire after the wire drawing process. This cold plastic deformation causes a phenomenon of material consolidation. However, the heat treatments applied on drawn wires lead to recrystallization phenomenon. We have found that in low temperature, the recrystallization reaction is observed only for reduction by wire drawing greater than 30 %

    From dislocation nucleation to dislocation multiplication in ceramic nanoparticle

    Get PDF
    Magnesium oxide nanocubes are compressed along the [001] direction in situ in the transmission electron microscope. Incipient plasticity in the smaller samples is characterized by the nucleation of few 1/2{110} dislocations while a larger number of line defects is observed in larger nanocubes. Yield and flow stresses scattered stochastically above a minimum value varying as the inverse of the sample size. The upper bound is given by the reduced number of dislocation sources. Such size-dependent behaviour is justified by a detailed statistical analysis and is fully explained by the deformation mechanism

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon

    A new approach to hardening mechanisms in the diffusion layer of gas nitrided ?-alloyed steels. Effects of chromium and aluminium: experimental and simulation studies

    Get PDF
    Hardening mechanisms in the diffusion layer of gas nitrided ?-iron and -steels have been investigatedthrough the study about effects of chromium (binary alloys and industrial steels) and aluminium(industrial steel). After nitriding (520°C 48h), nitrogen mass balance between total nitrogenconcentration located in the diffusion zone, experimentally determined, and the expected theoreticalnitrogen concentration, reveals for each alloy a “nitrogen excess”. Jack and Mittemeijer [1-3] suggestedthat the volume misfit between semi-coherent nitrides and matrix induces local matrix lattice distorsion,leading to a local increase of nitrogen solubility in the matrix.We propose a new approach, based on thermodynamical calculations (Thermo-Calc software), confirmedby different characterization methods (HRTEM, EDX and X-Ray). Indeed no significant solid solution “Nexcess” occurs, but the total nitrogen concentration is explained by complex MN nitrides precipitation,isomorph of CrN FCC, containing chromium, iron (up to 30at.% at 50?m from the surface), molybdenumand vanadium. During annealing (520°C 48h), atomic iron fraction in MN nitrides decreases and thecorresponding nitrogen atomic fraction diffuses to the core.Addition of aluminium in industrial steel strongly increases nitrogen concentration and hardening(?=HVx-HVinitial). Aluminium induces in the diffusion layer precipitation of Fe4N and Fe2-3N andprecipitates in complex MN FCC nitrides, containing chromium, iron and molybdenum

    Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation

    No full text
    This article concerns the study of iron corrosion in wet air under mega-electron-volt proton irradiation for different fluxes at room temperature and with a relative humidity fixed to 45%. Oxidized iron sample surfaces are characterized by ion beam analysis (Rutherford backscattering spectrometry and elastic recoil detection analysis), for the elemental analysis. The structural and physicochemical characterization is performed using the x-ray photoelectron spectroscopy and transmission electron microscopy techniques. We have also measured the iron oxidation kinetics. Radiation enhanced diffusion and transport processes have been evidenced. The modeling of the experimental data shows that the apparent oxygen diffusion coefficient increases whereas the oxygen transport velocity decreases as function of flux. Finally, the point defect model has been used to determine the electric field value in the samples. Results have shown that the transport process can be attributed to the presence of an electrical potential gradient

    Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A

    Get PDF
    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 Å and 1.6 Å, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5′ sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1′-Arg198, occupies the S1′ site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2′ subsite is formed by Arg363, Asn368 and Asp370, while S3′ subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4′-Lys201 makes hydrogen bond with Gln162. P5′-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin

    Formation of interfacial molybdenum carbide for DLC lubricated by MoDTC: Origin of wear mechanism

    Get PDF
    A large amount of research has been devoted to the effect of molybdenum dithiocarbamate (MoDTC) additives on the lubricating performances of carbon-based coatings, showing that a high wear rate is produced when the MoDTC is blended with the base oil. However, the mechanisms leading to the coating removal are not fully understood yet. In this work, the friction and wear performances of an amorphous hydrogenated DLC coating doped with silicon and oxygen have been analysed when lubricated by MoDTC-containing oils. Tribological experiments have been conducted with DLC/steel and DLC/DLC contacts under boundary lubrication conditions using a ball-on-flat tribometer. To understand the wear mechanism, the chemical composition of the tribofilm formed on the steel ball counterpart was investigated by X-ray Photoelectron Spectroscopy (XPS). Transmission Electron Microscopy (TEM) coupled with Energy Dispersive X-Ray Spectroscopy (EDX). A new DLC wear model has been proposed and validated

    Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design

    Get PDF
    HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at ∼2.5–3.0 Å resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 Å resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 Å resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs
    corecore