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ABSTRACT.  

Magnesium oxide nanocubes are compressed along the [001] direction in situ in the 

transmission electron microscope. Incipient plasticity in the smaller samples is characterized 

by the nucleation of few ½<110>{110} dislocations while a larger number of line defects is 

observed in larger nanocubes. Yield and flow stresses scattered stochastically above a 

minimum value varying as the inverse of the sample size. The upper bound is given by the 

reduced number of dislocation sources. Such size-dependent behaviour is justified by a 

detailed statistical analysis and is fully explained by the deformation mechanism. 
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IMPACT STATEMENT 

We unravel the size-dependent strengthening origin in MgO single-crystals using in situ TEM. 

The proposed lower and upper bound models of the yield stress are applicable to any single-

crystalline material. 

INTRODUCTION 

The strengthening of crystals with decreasing size has been reported in many micromechanical 

testing configurations and has led to the paradigm of “smaller is stronger” [1]. In single-crystals, 

compression tests of micropillars and nanoparticles have shown different behaviours as a 

function of size, crystalline lattice, orientation and surface state [2-5]. A power law fit is 

generally used to account for the evolution of the yield stress y as a function of the sample size d 

[6]: 

σy = Ad−x + σ0 

where x and A are positive reals, and σ0 represents the yield stress in bulk single-crystals. The 

exponent x has been reported to range between 0.60 and 0.97 for FCC lattices [7-12], and 

between 0.22 and 0.48 for BCC crystals [13, 14] with a significant dependence on crystal 

orientation [15]. Several exponent values have sometimes been found within the same material 

and, for some sizes, the behaviours of BCC and FCC metals converge [16].  

Two main mechanisms have been proposed to account for this size-dependent response. 

Confinement can lead to line-tension induced strengthening due to the presence of a significant 

amount of pre-existing dislocations in a limited volume [17-21]. In dislocation-free nano-objects, 
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plasticity occurs by surface dislocation nucleation events that can alternate with starved states [5, 

22-24]. This leads to a stochastic behaviour related to the probability of finding a surface defect 

on which dislocations can nucleate. Dunstan and Bushby showed that the scaling exponent x = 1 

was compatible with all available data acquired on pillars, implying that the size effect can be 

related to the dislocation curvature mechanism in systems originally containing dislocations [25].  

We report here a comprehensive experimental study of the size effect and the associated 

deformation mechanisms in magnesium oxide (MgO) single-crystalline nanocubes. MgO is 

characterized by dislocation slip in two slip system families, i.e. ½<110>{110} and 

½<110>{100} [26]. Critical resolved shear stress in MgO exhibit high lattice friction typical of 

thermally-activated glide processes as shown by the predominance of screw character 

dislocations, when deformed at room temperature [27, 28, 29]. Herein, we focus on the MgO 

nanoparticle deformation process, and in particular, on deformation process transition that occurs 

when changing the sample size, and on its consequence on the stress scaling exponent.  

MATERIALS & METHODS 

MgO nanocubes were synthesized according to the methods described in supplementary 

information (SI). The nanocubes are single-crystals and exhibit {100} faces. No bulk lattice 

defects such as dislocations, grain boundaries or twinning, could be observed in nanocubes 

smaller than 200-300 nm. 

In situ TEM nanocompression tests were carried out using a dedicated specimen holder, see 

details in SI. Tests were performed with a displacement rate, most often, set to 2 nm.s–1. Among 

all tests performed, only a set of 17 is presented in this study. The selected tests correspond to the 

most successful ones including best alignment conditions, minimum deviation of the sample 



4 

 

during the test, enhanced contrast and successful post-processing.  

 

Figure 1. BF TEM images of MgO nanocubes (near [100] zone axis) extracted from compression 

tests along the [001] direction. a, c, e) nanocube of size 114 nm before load, at ~15.1% and ~20% 

strain.  b, d, f) nanocube of size 262 nm before load, at ~29% and ~30% strain. Two dislocations 

are indicated by black arrows. 

 

RESULTS 

Typical Bright Field (BF) images of a smaller (size 114 nm) and a larger (size 262 nm) MgO 
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nanocubes, acquired before the compression tests, are provided in Figure 1a and Figure 1b, 

respectively. Both nanocubes are compressed along the [001] direction and observed along the 

[100] zone axis. The small nanocube does not show any contrast, which suggests the lack of pre-

existing dislocations. This is confirmed by Weak-Beam Dark Field (WBDF) analyses (see SI). 

On the contrary, the larger nanocube exhibits two thin mobile dark lines attributed to dislocations 

(see movies available at https://www.youtube.com/channel/UCgqIlZ1X_wbRl1HKsvdFeLw). 

This confirms that larger nanocubes may contain pre-existing dislocations, whereas the smaller 

ones are dislocation-free.  

In situ TEM compression tests and Molecular Dynamics simulations have shown that the onset of 

plasticity in dislocation-free MgO nanocubes is governed by nucleation and propagation of 

½<110>{110} dislocations [30]. Surface dislocation nucleation and propagation account for the 

contrasts observed during the test of the 114 nm sized nanocube shown in Figure 1c. After unload 

(Figure 1e), the smaller sample shows no clear contrasts attributed to a lack of defects (starved 

state).  In the following, the indexation method provided in SI is used to rigorously characterize 

slip systems and dislocation characters. Figure 2a shows a TEM image of a 195 nm sized 

nanocube at the onset of plasticity using the WBDF imaging mode, with a zone axis near to the 

[100] direction and using the diffraction vector g = (002). Only a few dislocations appear in the 

sample, as shown in Figure 2a. Three long screw dislocations segments lying in the 

1
2⁄ [011](011̅) slip systems are identified, with short terminations of edge character. We believe 

that this anisotropic shape is due to the high lattice friction that restricts screw dislocation 

mobility, as for bulk MgO single crystals deformed at low temperature [29, 30]. In conclusion, 

the deformation of smaller nanocubes is characterized by consecutive ½<110>{110} surface 

dislocation nucleation and starvation events that lead to quasi dislocation-free states after unload. 

https://www.youtube.com/channel/UCgqIlZ1X_wbRl1HKsvdFeLw
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Figure 2. TEM images of nanocubes at different stages of in situ compression tests. a) WBDF 

TEM image using the diffraction vector (002) of a 195 nm nanocube at yield stress. 

Crystallographic models are shown in the inset. b) WBDF image of a 355 nm sized cube at zero 

load after 22% true strain (diffraction vector used g = [11̅3̅]). 

Figure 2b shows a dislocation burst originating from a singular contact between the indenter and 

the top surface. Surprisingly, the sample holds most of the nucleated dislocations after unload. 

This behaviour is observed in all samples with sizes larger than 200-300 nm that exhibit similar 

dislocation microstructures. Mechanical responses for larger nanocubes are also smoother than 

those for smaller ones (Figure 3). Indeed, the larger number of dislocations required to 
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accommodate plastic deformation (when compared to smaller samples) induces a further 

discretized and distributed plastic relaxation, thus a better load control when increasing the 

sample size [21]. 
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Figure 3. Experimental engineering stress-strain curves of MgO nanocubes of different sizes, all 

compressed along the [001] direction. The inset shows the onset of the curve for the 450 nm 

nanocube. Arrows indicate the lower and upper positions of the yield point used to determine the 

yield stress and its error bar. 

Figure 3 shows stress-strain curves for several MgO nanocubes with different sizes, all 

compressed along the [001] direction. The nanocubes underwent several compression cycles but 

for clarity reasons, only the first cycles are reported and discussed. The curves obtained for 

nanocubes with sizes of 90 to 262 nm exhibit well-defined linear regimes (elastic domains). For 

the smallest nanocubes (90, 120 and 170 nm), the curves have the same slope, equal to that of the 

unloading part. The 262 nm cube exhibits a slightly lower slope attributed to a slight 

misalignment of the nanoparticle at the very beginning of the test, which only influences the 

critical strain (not the nanocube yield strength). For all these cubes, the linear regimes are 

interspersed by stress drops revealing dislocation nucleation events. The yield stress is then 
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defined as the maximum stress before the first stress drop. 

The curve obtained on the 450 nm cube is far smoother, with no significant stress drop. This 

behaviour might be justified by a transition in the main deformation process, especially as the 

initial dislocation content has shown to depend on size. The reduction in the slope of the elastic 

line is also attributed to nanocube misalignment. We consider that the yield point is thus very 

uncertain in this specimen and adopt the two break-points marked in the inset of Figure 3 as the 

upper and lower limits of its error bar.  

Yield stresses are shown in figure 4 and corresponding strain rates are summarized in SI. We 

believe that the observed flow stress variations are related to the size-induced plasticity process 

transition, i.e. from dislocation nucleation to dislocation multiplication, and to the evolution of 

dislocation microstructure, i.e. from very few dislocation to numerous dislocation populations, 

rather than on strain rate (see discussion in SI). Figure 3 emphasizes the size effect where data are 

fitted with the equations  = ad–x or  = ad–x + 0. A least-squares (LS) fit with a and x as fitting 

parameters and 0 = 0 returns the exponent x = 1.1 ± 0.25. Fitting 0 as well, x drops to 0.7 ± 0.7, 

with 0 = –1 ± 2 GPa. Other values of x are also available, e.g. x = 1.3 ± 0.2 when LS fitting of a 

straight line is done on the log-log axes.  
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Figure 4. Dependence of the yield stress on the nanocube size. The experimental points () are 

fitted to  = ad–x and  = ad–x + 0 using LS fitting on linear axes (blue lines and chain-dotted 

red lines, respectively). A LS fitting of a straight line on log-log axes is shown in the inset 

(dashed black line). The dotted black lines are the result of the outcome of the Maximum 

Likelihood (ML) fit calculated for  = ad–x with three parameters defining an asymmetric 

probability distribution functions of the residuals. The two graphs plotted above the 200 nm 

tickmark show the LS Gaussian pdf (blue) and the ML pdf (black) for the residuals, centred on 

the respective curves of best fit.  

 

Stress-strain curves obtained on the largest three cubes are quite smooth and reveal continuous 

plastic flow, typical of dislocation multiplication, whereas the curves obtained on the smallest 

cubes exhibit well-defined stress drops attributed to nucleation events. Such different trends can 

be compared with the mild and wild behaviours introduced by Weiss et al. [31, 32]. When mild, 

the scatter of the yield point is expected to be symmetric around the best fit. In contrast, the 

scatter from the wild data should always lie on or above the best fit, as higher stresses are 

required to enable dislocation nucleation. So, the expected probability distribution function (pdf) 

of the residuals should not be the Gaussian assumed by LS fits but a narrower Gaussian with a 

broader tail on the positive side only. The likelihood of the residuals is calculated for ad–x and 

maximized with respect to a, x, and three parameters defining the pdf (1 of the narrower 

Gaussian, 2 for the width of the tail, and f for the fraction of the probability that is in the tail). 

The outcome of this ML fit is x = 0.95 ± 0.10, with 1 = 0.06 ± 0.02 GPa, 2 = 1.3 ± 0.3 GPa and 

f = 0.66 ± 0.14. Comparing this fit with the LS ad–x, the value of the log-likelihood is increased 

from –17.5 to –10.5. The Bayesian information criterion is decreased from 43.5 to 38.5, which 

indicates a substantial preference for the ML model. It can be concluded that plasticity in MgO 

depends on the nanocube size: (i) the lower bound of the yield stress is given by the 1/d curve, 
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and (ii) the nanocubes having a yield stress above this curve exhibit wild plasticity, in agreement 

with the theory proposed elsewhere [33-35]. 

 

Figure 5. Dependence of the elastic strain (yield stress Y divided by the Young’s modulus at 

bulk Y = 248 GPa) on the normalized nanocube size (linear size d divided by the lattice constant 

a0 = 0.421 nm). The brown points are the lowest and highest stresses observed in the range of 

deformation from 0.2 to 0.3. The cyan highlighting identifies the data where plasticity is 

governed by dislocation propagation; the other data show the strain bursts and stress drops 

characteristic of small-scale plasticity (nucleation-starvation mechanism). The blue curve 

represents the minimum strength that any small volume of material can have when plastic 

deformation is enabled by normal dislocation multiplication and propagation mechanisms [40]. 

The red chain-dotted curve is the sum of the size effect equation and the equation of Phani et al. 

[33-35]. 

 

DISCUSSION 

To investigate the universality of the model, Figure 5 plots MgO nanocubes data in normalized 

form, i.e. stresses divided by Young’s modulus (Y = 248 GPa for bulk MgO) and linear sizes 

divided by the lattice parameter (a0 = 0.421 nm for MgO). We consider yield points only when 

they are readily identifiable on the stress-strain curves. In that case, error bars represent 
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uncertainties on the measured value, due to the signal-to-noise ratio or to the possible presence of 

a change in slope before the first stress drop. The lowest and highest stresses observed in the 

range of deformation from 0.2 to 0.3 are also used. We also show data for InGaAs epitaxial 

strained layers for comparison. InGaAs layers were grown to thicknesses greater than their 

critical thickness, so that the misfit strain was partially relaxed by plastic deformation [36]. The 

residual elastic strain for a thickness h was 0.8 nm/h, in good agreement with the prediction from 

critical thickness theory of ~5b/h where b is the relevant component of the relevant Burgers 

vector [37]. However, to avoid issues of Schmid factors, this is expressed, rather, as ~1.4a0/h. 

The solid blue line, obtained by the fit to the InGaAs data and the above-mentioned theoretical 

considerations, represents the minimum strength that any small volume of material can have 

when plastic deformation is enabled by normal dislocation multiplication and propagation 

mechanisms. The MgO data, within error, are consistent with this size effect, mostly lying close 

to the minimum strength curve where mild deformation arises (d/a0 > 500) or above the minimum 

strength curve (d/a0 < 500).  

In sufficiently small volumes, especially when the volume is limited by free surfaces, it is 

possible for the normal dislocation multiplication and propagation mechanisms to be prevented 

(dislocation starvation).  Considering that as the size of a specimen is reduced, the number of 

dislocation sources or other defects capable of initiating such events may be only a few, Phani et 

al. used Poisson statistics and analysed the results of Monte Carlo simulations [33]. They 

concluded that an upper bound could be put on the observed scatter of yield strengths between 

the bulk strength b and the theoretical strength,  

𝜎𝑈𝐵 = 𝜎𝑏
𝜌1𝐷ℓ

𝜌1𝐷ℓ+𝑙𝑛𝛼
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where 𝜌1𝐷  is the linear density of such defects (the reciprocal of the average distance between 

them), ℓ relevant specimen size, and , taken to be 0.05, the proportion of events that occur 

above the upper bound. We add this function to the size-effect minimum strength, since it is an 

additional strengthening mechanism, and plot it in Figure 5, for 1/𝜌1𝐷 = 120 nm  and b = 50 

MPa, value of the macroscopic yield stress of bulk MgO compressed at room temperature along 

the <001> direction [29]. Data are then expected to fall anywhere between the minimum strength 

and this upper bound, as indeed they mostly do. This confirms the stochastic behavior of MgO 

nanocubes for d/a0 < 500, where nucleation and starvation are the rate-controlling mechanisms. 

We conclude that the experimental results are explained by and are consistent with the size-effect 

minimum strength and the number-effect stochastic strengthening. The size dependence is 

particularly visible in MgO, which combines a very high theoretical strength due to lattice 

friction and a very low bulk strength. We suggest that such behaviour can be generalized to any 

monocrystalline nanomaterial – including BCC and FCC metallic single-crystals - but as the size 

dependence depends on both parameters, its effect may be less pronounced, or the transition may 

occur at different sizes.  

ACKNOWLEDGMENTS 

The authors acknowledge the Consortium Lyon Saint-Etienne de Microscopie (CLYM) for the 

access to the JEOL 2010F microscope. 

DECLARATION OF INTEREST STATEMENT 

The authors declare no competing interests. 



13 

 

REFERENCES 

1. Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal 

plasticity. Science 2004;305:986-989. 

2. Kiani S, Ratsch C, Minor AM, et al. Orientation- and size-dependent room-temperature 

plasticity in ZrC crystals. Phil. Mag. 2015;95:985-997. 

3. Korte S, Clegg WJ. Discussion of the dependence of the effect of size on the yield stress in 

hard materials studied by microcompression of MgO. Phil. Mag. 2011;91:1150-1162. 

4. Kiener D, Minor AM. Source truncation and exhaustion : insights from quantitative in situ 

TEM tensile testing. Nano Lett. 2011;11:3816-3820. 

5. Wagner AJ, Hintsala ED, Kumar P, et al. Mechanisms of plasticity in near-theoretical strength 

sub-100 nm Si nanocubes. Acta Mater. 2015;100:256-265. 

6. Kraft O, Gruber PA, Mönig R, et al. Plasticity in Confined Dimensions. Annual Rev. Mater. 

Res. 2010;40:293-317. 

7. Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic 

size effect. Prog. Mater. Sci. 2001;56:654-724. 

8. Uchic MD, Shade PA, Dimiduk DM. Plasticity of Micrometer-Scale Single Crystals in 

Compression. Annual Rev. Mater. Res. 2009;39:361 86. 

9. Dou R, Derby B. A universal scaling law for the strength of metal micropillars and nanowires. 

Scripta Mater. 2009;61:524 27. 

10. Jennings AT, Burek MJ, Greer JR. Microstructure versus Size: Mechanical Properties of 

Electroplated Single Crystalline Cu Nanopillars. Phys. Rev. Lett. 2010;104:135503. 

11. Mordehai D, Lee SW, Backes B, et al. Size effect in compression of single-crystal gold 

microparticles. Acta Mater. 2011;59:5202-15. 

12. Sharma A, Hickman J, Gazit N, et al. Nickel particles set a new record of strength. Nature 

Commun. 2018;9:4102. 

13. Kim JY, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum, 

tantalum and niobium at the nanoscale. Acta Mater. 2010;58:2355–2363. 

14. Schneider AS, Clark BG, Frick CP, et al. Effect of orientation and loading rate on 

compression behavior of small-scale Mo pillars. Mater. Sci. Eng. A. 2009;508:241–246. 

15. Greer JR, Kim JY, Burek MJ. The in situ mechanical testing of nanoscale single-crystalline 

nanopillars. JOM 2009;61:19-25. 



14 

 

16. Huang L, Li QJ, Shan ZW, et al. A new regime for mechanical annealing and strong sample-

size strengthening in body centred cubic molybdenum. Nature Commun. 2011;2:547. 

17. Bragg L. The strength of metals. Math. Proc. Cambridge Philos. Soc. 1949;45:125-130. 

18. Kuhlmann-Wilsdorf D, van der Merwe JH. Theory of dislocation cell sized in deformed 

metals. Mater. Sci. Eng. 1982;55:79-83. 

19. Beanland R. Dislocation multiplication mechanisms in low-misfit strained epitaxial layers. J. 

Appl. Phys. 1995;77:6217. 

20. Dehm G, Balk TJ, von Blanckenhagen B, et al. Dislocation dynamics in sub-micron 

confinement: recent progress in thin film plasticity. Z. Metallkunde 2002;93:383-391. 

21. Dunstan DJ. The size effect in the mechanical strength of semiconductors and metals: strain 

relaxation by dislocation-mediated plastic deformation. J. Mater. Res. 2017;32:4041-

4053. 

22. Nix WD, Greer JR, Feng G, et al. Deformation at the nanometer and micrometer length 

scales: effects of strain gradients and dislocation starvation. Thin solid films 

2007;515:3152-3157. 

23. Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys. 

Rev. B 2006;73:245410. 

24. Chisholm C, Bei H, Lowry MB, et al. Dislocation starvation and exhaustion hardening in Mo 

alloy nanofibers. Acta Mater. 2012;60:2258–2264. 

25. Dunstan DJ, Bushby AJ. The scaling exponent in the size effect of small scale plastic 

deformation. Int. J. Plasticity 2013;40:152-162. 

26. Amodeo J, Merkel S, Tromas C, et al. Dislocations and plastic deformation in MgO crystals : 

a review. Crystals 2018;8:240. 

27. Amodeo J, Carrez P, Devincre B, et al. Multiscale modelling of MgO plasticity. Acta Mater. 

2011;59:2291-302. 

28. Appel F, Wielke B. Low temperature deformation of impure MgO single crystals. Mater. Sci. 

Eng. 1985;73:97-103. 

29. Hulse CO, Pask JA. Mechanical properties of magnesia single crystals compression. J. Am. 

Ceram. Soc. 1960;43:373-378. 

30. Issa I, Amodeo J, Réthoré J, et al. In situ investigation of MgO nanocube deformation at room 

temperature. Acta Mater. 2015;86:295-304. 



15 

 

31. Weiss J, Ben Rhouma W, Richeton T, et al. From mild to wild fluctuations in crystal 

plasticity. Phys. Rev. Lett. 2015;114:105504. 

32. Zhang P, Umut Salman O, Zhang JY, et al. Taming intermittent plasticity at small scales. 

Acta Mater. 2017;128:351-364. 

33. Sudharshan Phani P, Johanns KE, George EP, et al. A simple stochastic model for yielding in 

specimens with limited number of dislocations. Acta Mater. 2013;61:2489-2499. 

34. Morris JR, Bei H, Pharr GM, et al. Size effects and stochastic behavior of nanoindentation 

pop in. Phys. Rev. Lett. 2011;106:165502. 

35. Kwon J, Bowers ML, Brandes MC, et al. Characterization of dislocation structures and 

deformation mechanisms in as-grown and deformed directionally solidified NiAl-Mo 

composites. Acta Mater. 2015;89:315-326. 

36. Dunstan DJ, Kidd P, Howard LK, et al. Plastic relaxation of InGaAs grown on GaAs. Appl. 

Phys. Lett. 1991;59:3390-3392. 

37. Dunstan DJ. Critical thickness theory applied to micromechanical testing. Adv. Eng. Mater. 

2012;14:942-947. 

 


