129 research outputs found

    Objetivos del proyecto ECOPHYN: Ecofisiología de la alimentación y la nutrición del pulpo común

    Get PDF
    Trabajo presentado en el XXV FOROACUI Foro de los recursos marinos y de la acuicultura de las rías gallegas, celebrado en Pontevedra (España) del 05 al 06 de junio de 2022.Los pulpos tienen un papel relevante en las cadenas tróficas de los ecosistemas marinos de todo el mundo, representando un recurso pesquero de gran importancia y una especie prometedora para la acuicultura. El pulpo común, Octopus vulgaris, es la especie de pulpo con mayor interés comercial en todo el mundo; sin embargo, la producción pesquera no será suficiente para cubrir la demanda del mercado en un futuro próximo. En este contexto, los esfuerzos se han dirigido a la producción sostenible de esta especie tanto desde la acuicultura como desde la pesca. En los últimos años se han producido avances relevantes en estos ámbitos, entre los que se encuentran las aportaciones de nuestros grupos de investigación, que han despejado el camino para una mejor comprensión de su papel en el medio natural, la pesca y la futura producción acuícola de esta especie. La alimentación y la nutrición son factores clave para entender los requisitos ecofisiológicos de los pulpos tanto en el campo como en condiciones de cultivo. De hecho, nuestros estudios previos identificaron un importante desconocimiento en su fisiología nutricional, lo que todavía dificulta su producción acuícola y la comprensión de su papel como depredador en los sistemas marinos. También hay que tener en cuenta que la mayor parte de los conocimientos sobre su fisiología y comportamiento se han obtenido básicamente de individuos subadultos y adultos y que existe mucha menos información sobre la fase de transición entre las paralarvas planctónicas y las fases bentónicas, la fase juvenil, en el medio natural y en condiciones de cultivo, debido a las dificultades para obtener estas primeras fases de vida en cantidades suficientes. El presente proyecto pretende abordar esta falta de conocimiento, estudiando la ecofisiología de la alimentación y la nutrición en O. vulgaris a lo largo de su desarrollo, con especial énfasis en estas fases tempranas antes mencionadas. Nuestra hipótesis general de trabajo propone que la mejora del conocimiento de la fisiología nutricional de esta especie tendrá un impacto significativo en la futura gestión y desarrollo de este recurso comercial. Más concretamente, nuestra propuesta pretende profundizar en la digestión, metabolismo y nutricion del pulpo mediante la caracterización de los ritmos endógenos, el proceso de digestión, las vías metabólicas, el microbioma, la firma isotópica y la microquímica, así como la identificación de biomarcadores vinculados a la respuesta inmune, la salud y el bienestar en tejidos seleccionados del pulpo. Esta investigación se llevará a cabo a lo largo del desarrollo del pulpo, utilizando diferentes enfoques y las técnicas más recientes, incluidas las herramientas "ómicas". La generación de este nuevo conocimiento sentará las bases para una mejora en la explotación racional de este recurso tanto a nivel de su acuicultura y bienestar animal como para el conocimiento del papel de la especie en su medio natural

    Acute Graft-vs.-Host Disease-Associated Endothelial Activation in vitro Is Prevented by Defibrotide

    Get PDF
    Altres ajuts: This study was supported in part by Jazz Pharmaceuticals Plc (IST-16-10355), German Jose Carreras Leukaemia Foundation (11R/2016 and 03R/2019).Angiogenesis and endothelial activation and dysfunction have been associated with acute graft-vs.-host disease (aGVHD), pointing to the endothelium as a potential target for pharmacological intervention. Defibrotide (DF) is a drug with an endothelium-protective effect that has been approved for the treatment of veno-occlusive disease/sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Clinical data suggest that DF also reduces the incidence of aGVHD; however, the mechanisms of DF-mediated aGVHD regulation have not been examined. To investigate possible DF-mediated prophylactic and therapeutic mechanisms in aGVHD, we performed in vitro studies using endothelial cell (EC) lines. We found that DF significantly and dose-dependently suppressed EC proliferation and notably reduced their ability to form vascular tubes in Matrigel. To explore whether DF administered prophylactically or therapeutically has a significant effect on aGVHD endothelial dysfunction, ECs were exposed to media containing sera from patients with aGVHD (n = 22) in the absence or presence of DF and from patients that did not develop aGVHD (n = 13). ECs upregulated adhesion molecules (vascular cell adhesion molecule 1, intercellular adhesion molecule 1), the adherence junction protein VE-cadherin, von Willebrand factor (VWF), and Akt phosphorylation in response to aGVHD sera. These responses were suppressed upon treatment with DF. In summary, DF inhibits vascular angiogenesis and endothelial activation induced by sera from aGVHD patients. Our results support the view that DF has notable positive effects on endothelial biology during aGVHD

    Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments.

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is ?no? ? as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions

    Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is 'no' - as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions

    Can Current Moisture Responses Predict Soil CO2 Efflux Under Altered Precipitation Regimes? A Synthesis of Manipulation Experiments

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available, or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for seven of these 38 experiments, this hypothesis was rejected. Importantly, these were the experiments with the most reliable datasets, i.e., those providing high-frequency measurements of SCE. Accordingly, regression tree analysis demonstrated that measurement frequency was crucial; our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate-dependencies of SCE. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, they require high-frequency SCE measurements and they should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because we demonstrated that at least for some ecosystems, current moisture responses cannot be extrapolated to predict SCE under altered rainfall

    Antibodies to Serine Proteases in the Antiphospholipid Syndrome

    Get PDF
    It is generally accepted that the major autoantigen for antiphospholipid antibodies (aPL) in the antiphospholipid syndrome (APS) is β2-glycoprotein I (β2GPI). However, a recent study has revealed that some aPL bind to certain conformational epitope(s) on β2GPI shared by the homologous enzymatic domains of several serine proteases involved in hemostasis and fibrinolysis. Importantly, some serine protease–reactive aPL correspondingly hinder anticoagulant regulation and resolution of clots. These results extend several early findings of aPL binding to other coagulation factors and provide a new perspective about some aPL in terms of binding specificities and related functional properties in promoting thrombosis. Moreover, a recent immunological and pathological study of a panel of human IgG monoclonal aPL showed that aPL with strong binding to thrombin promote in vivo venous thrombosis and leukocyte adherence, suggesting that aPL reactivity with thrombin may be a good predictor for pathogenic potentials of aPL

    HpaC Controls Substrate Specificity of the Xanthomonas Type III Secretion System

    Get PDF
    The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously identified as a T3S control protein. Since HpaC promotes secretion of translocon and effector proteins but inhibits secretion of HrpB2, HpaC presumably acts as a T3S substrate specificity switch protein. Protein–protein interaction studies revealed that HpaC interacts with HrpB2 and the C-terminal domain of HrcU, a conserved inner membrane component of the T3S system. However, no interaction was observed between HpaC and the full-length HrcU protein. Analysis of HpaC deletion derivatives revealed that the binding site for the C-terminal domain of HrcU is essential for HpaC function. This suggests that HpaC binding to the HrcU C terminus is key for the control of T3S. The C terminus of HrcU also provides a binding site for HrpB2; however, no interaction was observed with other T3S substrates including pilus, translocon and effector proteins. This is in contrast to HrcU homologs from animal pathogenic bacteria suggesting evolution of distinct mechanisms in plant and animal pathogenic bacteria for T3S substrate recognition

    Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    Get PDF
    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress

    A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes

    Get PDF
    Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem
    corecore