506 research outputs found

    Frequency stabilization for mobile satellite terminals via LORAN

    Get PDF
    Digital satellite communication systems require careful management of frequency stability. Historically, frequency stability has been accomplished by continuously powered, high cost, high performance reference oscillators. Today's low cost mobile satellite communication equipment must operate under wide ranging environmental conditions, stabilize quickly after application of power, and provide adequate performance margin to overcome RF link impairments unique to the land mobile environment. Methods for frequency stabilization in land mobile applications must meet these objectives without incurring excessive performance degradation. A frequency stabilization scheme utilizing the LORAN (Long Range Navigation) system is presented

    Pair creation of black holes joined by cosmic strings

    Get PDF
    We argue that production of charged black hole pairs joined by a cosmic string in the presence of a magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the black holes towards each other, opposing to the background field. An estimation of the production rate using the Euclidean action shows that the process is suppressed as compared to the formation of black holes without strings.Comment: 7 pages, LaTeX. Minor typos corrected

    Abelian Higgs hair for extreme black holes and selection rules for snapping strings

    Get PDF
    It has been argued that a black hole horizon can support the long range fields of a Nielsen-Olesen string, and that one can think of such a vortex as black hole ``hair''. We show that the fields inside the vortex are completely expelled from a charged black hole in the extreme limit (but not in the near extreme limit). This would seem to imply that a vortex cannot be attached to an extreme black hole. Furthermore, we provide evidence that it is energetically unfavourable for a thin vortex to interact with a large extreme black hole. This dispels the notion that a black hole can support `long' Abelian Higgs hair in the extreme limit. We discuss the implications for strings that end at black holes, as in processes where a string snaps by nucleating black holes.Comment: 4 pages REVTeX plus 3 figures. Additional figures and mpeg movies available at http://www.damtp.cam.ac.uk/user/ats25/strhole.html This paper is a condensed version of gr-qc/9706004, and is essentially the talk presented at The Eighth Marcel Grossmann Meeting on General Relativity, 22-27 June 1997, The Hebrew University, Jerusalem, Israe

    A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications

    Get PDF
    Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications

    Comprehensive analysis of the chromatin landscape in Drosophila melanogaster.

    Get PDF
    Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    Pair creation of anti-de Sitter black holes on a cosmic string background

    Full text link
    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the strings tension. In an AdS background this is the only study done in the process of production of a pair of correlated black holes with spherical topology. The acceleration AA of the produced black holes is necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant. Only in this case the virtual pair of black holes can overcome the attractive background AdS potential well and become real. The instantons that describe this process are constructed through the analytical continuation of the AdS C-metric. Then, we explicitly compute the pair creation rate of the process, and we verify that (as occurs with pair creation in other backgrounds) the pair production of nonextreme black holes is enhanced relative to the pair creation of extreme black holes by a factor of exp(Area/4), where Area is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when L=0.Comment: 13 pages, 3 figures, ReVTeX

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces
    corecore