22 research outputs found

    Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization

    Get PDF
    DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase

    Linker histone H1.8 inhibits chromatin-binding of condensins and DNA topoisomerase II to tune chromosome compaction and individualization [preprint]

    Get PDF
    DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 regulates chromatin levels of condensins and topo II. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer likely through shortening the average loop size and reducing DNA amount in each layer of mitotic loops. Furthermore, H1.8-mediated suppression of condensins and topo II binding to chromatin limits chromosome individualization by preventing resolution of interchromosomal linkages. While linker histones locally compact DNA by clustering nucleosomes, we propose that H1.8 controls chromosome morphology and topological organization through restricting the loading of condensins and topo II on chromatin

    A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes

    Get PDF
    Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the three-dimensional structure of knobs in detergent-insoluble skeletons of P. falciparum 3D7 schizonts. We describe a highly organised knob skeleton composed of a spiral structure coated by an electron dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualised by high resolution freeze fracture scanning electron microscopy, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P. falciparum infection contain a highly organised skeleton structure underlying a specialised region of membrane. We propose that the spiral and dense coat organise the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells

    Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial.

    Get PDF
    BACKGROUND: Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes. METHODS: In this multicentre, open-label, randomised controlled trial, we recruited women aged 18-40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≀13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527. FINDINGS: Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference -0·19%; 95% CI -0·34 to -0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy). INTERPRETATION: Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use. FUNDING: Juvenile Diabetes Research Foundation, Canadian Clinical Trials Network, and National Institute for Health Research

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Le 13e Carrousel international du film de Rimouski : Une année de transition

    No full text
    Centrioles are evolutionarily conserved cylindrical cell organelleswith characteristic radial symmetry. Despite their considerable size (400 nm x 200 nm, in humans), genetic studies suggest that relatively few protein components are involved in their assembly. We recently characterized the molecular architecture of the centrosomal P4.1-associated protein (CPAP), which is crucial for controlling the centriolar cylinder length. Here, we review the remarkable architecture of the C-terminal domain of CPAP, termed the G-box, which comprises a single, entirely solvent exposed, antiparallel beta-sheet. Molecular dynamics simulations support the stability of the G-box domain even in the face of truncations or amino acid substitutions. The similarity of the G-box domain to amyloids (or amyloid precursors) is strengthened by its oligomeric arrangement to form continuous fibrils. G-box fibrils were observed in crystals as well as in solution and are also supported by simulations. We conclude that the G-box domain may well represent the best analogue currently available for studies of exposed beta-sheets, unencumbered by additional structural elements or severe aggregations problems

    Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage

    No full text
    Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP-mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of −0.4. This ∆Lk increases to −0.8 during ATP binding and resets to −0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin-DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a “pinch and merge” mechanism implies that two DNA-binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.Work in the Roca laboratory is supported by the Plan Estatal de Investigacion Cientıfica y Tecnica of Spain, with grant PID2019-109482GB-I00 to JR; and research fellowships BES-2012-061167 to JS, BES-2016-077806 to SD and PRE2020-093378 to AA. Work in the Aragon laboratory is supported by the Medical Research Council (UKRI MC-A652-5PY00)

    Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    No full text
    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum
    corecore