4,992 research outputs found

    The two-and three-point correlation functions of the polarized five-year WMAP sky maps

    Full text link
    We present the two- and three-point real space correlation functions of the five-year WMAP sky maps, and compare the observed functions to simulated LCDM concordance model ensembles. In agreement with previously published results, we find that the temperature correlation functions are consistent with expectations. However, the pure polarization correlation functions are acceptable only for the 33GHz band map; the 41, 61, and 94 GHz band correlation functions all exhibit significant large-scale excess structures. Further, these excess structures very closely match the correlation functions of the two (synchrotron and dust) foreground templates used to correct the WMAP data for galactic contamination, with a cross-correlation statistically significant at the 2sigma-3sigma confidence level. The correlation is slightly stronger with respect to the thermal dust template than with the synchrotron template.Comment: 10 pages, 5 figures, published in ApJ. v2: New title, minor changes to appendix, and fixed some typos. v3: Matches version published in Ap

    Real space tests of the statistical isotropy and Gaussianity of the WMAP CMB data

    Full text link
    ABRIDGED: We introduce and analyze a method for testing statistical isotropy and Gaussianity and apply it to the WMAP CMB foreground reduced, temperature maps, and cross-channel difference maps. We divide the sky into regions of varying size and shape and measure the first four moments of the one-point distribution within these regions, and using their simulated spatial distributions we test the statistical isotropy and Gaussianity hypotheses. By randomly varying orientations of these regions, we sample the underlying CMB field in a new manner, that offers a richer exploration of the data content, and avoids possible biasing due to a single choice of sky division. The statistical significance is assessed via comparison with realistic Monte-Carlo simulations. We find the three-year WMAP maps to agree well with the isotropic, Gaussian random field simulations as probed by regions corresponding to the angular scales ranging from 6 deg to 30 deg at 68% confidence level. We report a strong, anomalous (99.8% CL) dipole ``excess'' in the V band of the three-year WMAP data and also in the V band of the WMAP five-year data (99.3% CL). We notice the large scale hemispherical power asymmetry, and find that it is not highly statistically significant in the WMAP three-year data (<~ 97%) at scales l <= 40. The significance is even smaller if multipoles up to l=1024 are considered (~90% CL). We give constraints on the amplitude of the previously-proposed CMB dipole modulation field parameter. We easily detect the residual foregrounds in cross-band difference maps at rms level <~ 7 \mu K (at scales >~ 6 deg) and limit the systematical uncertainties to <~ 1.7 \mu K (at scales >~ 30 deg).Comment: 20 pages, 20 figures; more tests added; updated to match the version to be published in JCA

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton

    Full text link
    The three Minkowski functionals and the recently defined length of the skeleton are estimated for the co-added first-year Wilkinson Microwave Anisotropy Probe (WMAP) data and compared with 5000 Monte Carlo simulations, based on Gaussian fluctuations with the a-priori best-fit running-index power spectrum and WMAP-like beam and noise properties. Several power spectrum-dependent quantities, such as the number of stationary points, the total length of the skeleton, and a spectral parameter, gamma, are also estimated. While the area and length Minkowski functionals and the length of the skeleton show no evidence for departures from the Gaussian hypothesis, the northern hemisphere genus has a chi^2 that is large at the 95% level for all scales. For the particular smoothing scale of 3.40 degrees FWHM it is larger than that found in 99.5% of the simulations. In addition, the WMAP genus for negative thresholds in the northern hemisphere has an amplitude that is larger than in the simulations with a significance of more than 3 sigma. On the smallest angular scales considered, the number of extrema in the WMAP data is high at the 3 sigma level. However, this can probably be attributed to the effect of point sources. Finally, the spectral parameter gamma is high at the 99% level in the northern Galactic hemisphere, while perfectly acceptable in the southern hemisphere. The results provide strong evidence for the presence of both non-Gaussian behavior and an unexpected power asymmetry between the northern and southern hemispheres in the WMAP data.Comment: 17 pages, 10 figures, accepted for publication in Ap

    Constraints on mode couplings and modulation of the CMB with WMAP data

    Full text link
    We investigate a possible asymmetry in the statistical properties of the cosmic microwave background temperature field and to do so we construct an estimator aiming at detecting a dipolar modulation. Such a modulation is found to induce correlations between multipoles with Δ=1\Delta\ell=1. Applying this estimator, to the V and W bands of the WMAP data, we found a significant detection in the V band. We argue however that foregrounds and in particular point sources are the origin of this signal.Comment: 14 pages, 14 figure

    I. The Isotopic Foldy-Wouthuysen Representation and Chiral Symmetry

    Full text link
    The paper introduces the isotopic Foldy-Wouthuysen representation. This representation was used to derive equations for massive interacting fermion fields. When the interaction Hamiltonian commutes with the matrix, these equations possess chiral invariance irrespective of whether fermions have mass or are massless. The isotopic Foldy-Wouthuysen representation preserves the vector and axial currents irrespective of the fermion mass value. In the Dirac representation, the axial current is preserved only for massless fermions. In the isotopic Foldy-Wouthuysen representation, the ground state of fermions (vacuum) turns out to be degenerate, and therefore there is the possibility of spontaneously breaking parity (P - symmetry). This study considers the example of constructing a chirally symmetric quantum electrodynamics framework in the isotopic Foldy-Wouthuysen representation. A number of physical processes are calculated in the lowest orders of the perturbation theory. Final results of the calculations agree with the results of the standard quantum electrodynamics.Comment: 37 pages, 9 figure

    Increasing evidence for hemispherical power asymmetry in the five-year WMAP data

    Get PDF
    (Abridged)Motivated by the recent results of Hansen et al. (2008) concerning a noticeable hemispherical power asymmetry in the WMAP data on small angular scales, we revisit the dipole modulated signal model introduced by Gordon et al. (2005). This model assumes that the true CMB signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p. Previous analyses of this model has been restricted to very low resolution due to computational cost. In this paper, we double the angular resolution, and compute the full corresponding posterior distribution for the 5-year WMAP data. The results from our analysis are the following: The best-fit modulation amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072 +/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04 and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from 40 to 64, and all results are consistent to within 1sigma. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the 5-year WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for publication in Ap

    Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    Get PDF
    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be determined accurately. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O VII vs. O VIII emission indicates an ionizing shock propagating inwards, possibly through a strong density gradient in the ejecta. We compare the X-ray emission to Australia Telescope Compact Array 6 cm radio observations (Amy and Ball) and to archival Hubble Space Telescope [O III] observations. The ring of radio emission is predominantly inward of the outer blast wave, consistent with an interpretation as synchrotron radiation originating behind the blast wave, but outward of the bright X-ray ring of emission. Many (but not all) of the prominent optical filaments are seen to correspond to X-ray bright regions. We obtain an upper limit of ~9e33 erg/s (3 sigma) on any potential pulsar X-ray emission from the central region.Comment: Accepted for pulication in Ap. J. Letters. 4 pages, 6 figures (one color figure). Formatted with emulateapj5. Revised to incorporate copyediting changes. High-resolution postscript (3.02MB) and tiff versions of the color figure are available from http://chandra.harvard.edu/photo/cycle1/0015multi/index.htm

    Anomalous variance in the WMAP data and Galactic Foreground residuals

    Get PDF
    A previous work (Monteser\'in et al. 2008) estimated the CMB variance from the three-year WMAP data, finding a lower value than expected from Gaussian simulations using the WMAP best-fit cosmological model. We repeat the analysis on the five-year WMAP data using a new estimator with lower bias and variance. Our results confirm this anomaly at higher significance, namely with a p-value of 0.31%. We perform the analysis using different exclusion masks, showing that a particular region of the sky near the Galactic plane shows a higher variance than 95.58% of the simulations whereas the rest of the sky has a lower variance than 99.96% of the simulations. The relative difference in variance between both regions is bigger than in 99.64% of the simulations. This anisotropic distribution of power seems to be causing the anomaly since the model assumes isotropy. Furthermore, this region has a clear frequency dependence between 41GHz and 61GHz or 94GHz suggesting that Galactic foreground residuals could be responsible for the anomaly. Moreover, removing the quadrupole and the octopole from data and simulations the anomaly disappears. The variance anomaly and the previously reported quadrupole and octopole alignment seem therefore to be related and could have a common origin. We discuss different possible causes and Galactic foreground residuals seem to be the most likely one. These residuals would affect the estimation of the angular power spectrum from the WMAP data, which is used to generate Gaussian simulations, giving rise to an inconsistency between the estimated and expected CMB variance. If the presence of residuals is confirmed, the estimation of the cosmological parameters could be affected.Comment: Accepted for publication in MNRAS. Analysis section rewritten. New exclusion masks are used finding a high variance region. Relation to the Quadrupole-Octopole alignment foun
    corecore