10 research outputs found

    NOTCH activation promotes glycosyltransferase expression in human myeloid leukemia cells

    Get PDF
    NOTCH signaling diversely regulates the growth of acute myeloid leukemia (AML) cells. It is known that glycosylation of NOTCH receptors modulates NOTCH activation. However, little is known about glycosylation of NOTCH in AML cells. We examined the effects of ligand-induced NOTCH activation on the expression of NOTCHmodifying glycosyltransferases in two AML cell lines, THP-1 and TMD7. The cells were stimulated with recombinant NOTCH ligands JAGGED1 and DELTA1, and subjected to immunoblot analysis to evaluate the expression levels of glycosyltransferases. Ligand stimulation promoted the expression of POFUT1, LFNG, MFNG, RFNG, GXYLT1, GXYLT2, and XXYLT1 in THP-1 cells, and that of RFNG and GXYLT1 in TMD7 cells. We found that NOTCH activation promoted the expression of several glycosyltransferases in AML cells. This suggests that NOTCH activation modulates its sensitivity to NOTCH ligands by increased glycosylation of NOTCH receptors in AML cells. Further investigation is needed to elucidate its biological significance

    FOXP3 knockdown inhibits the proliferation and reduces NOTCH1 expression of T cell acute lymphoblastic leukemia cells

    No full text
    Abstract Objective Forkhead box P3 (FOXP3) is a master transcriptional factor of regulatory T-cells (Tregs). Recent studies have shown that FOXP3 is associated with growth inhibition of cancer cells. However, the role of FOXP3 in acute T-lymphoblastic leukemia (T-ALL) cells is not known. It was also reported that NOTCH signaling promoted the expression of FOXP3 in Tregs. However, the effect of FOXP3 on NOTCH expression in T-ALL cells is little known. Therefore, we examined the effect of FOXP3 knockdown on the proliferation of T-ALL cells and NOTCH1 signaling. Results Two T-ALL cell lines Jurkat and KOPT-K1, harboring activating NOTCH1 mutations, were transfected with small interfering RNA against FOXP3. Cell growth was assessed with a colorimetric assay and morphology was observed under a microscope. FOXP3 knockdown significantly reduced cell growth and induced morphological changes suggesting apoptosis. Quantitative polymerase chain reaction revealed that FOXP3 knockdown caused the downregulation of mRNA expression of NOTCH1 and HES1. These findings suggest that FOXP3 supports the growth of T-ALL cells although this can not be generalized because we examined only two cell lines. The observed growth suppression can be partly due to the downregulation of NOTCH1 signaling. FOXP3 may be a potential therapeutic target in T-ALL

    Ascorbic Acid Protects The Diaphragm Muscle Against Myonecrosis In Mdx Mice.

    No full text
    Oxidative stress contributes to myonecrosis in the dystrophin-deficient fibers of mdx mice and in Duchenne's muscular dystrophy. We examined the effects of ascorbic acid (AA), an antioxidant and free radical scavenger, on the dystrophic diaphragm muscle. Mdx mice (14 d old) received AA for 14 d. Control mdx mice received saline. The muscle damage was visualized by the penetration of Evans blue dye into myofibers and the extent of inflammation was assessed by histologic analysis. Creatine kinase levels were measured for the biochemical evaluation of muscle fiber degeneration. The levels of tumor necrosis factor-α (a proinflammatory cytokine) and 4-hydroxynonenal (a marker of lipid peroxidation) were analyzed by immunoblotting. Ascorbic acid decreased creatine kinase levels, myonecrosis, inflammation, and the levels of tumor necrosis factor-α and 4-hydroxynonenal. The present results suggest that AA plays a protective role in dystrophic muscle degeneration, possibly by decreasing reactive oxygen species, and support further investigations of AA as a potential therapy for dystrophinopathies.28686-9

    Ascorbic acid protects the diaphragm muscle against myonecrosis in mdx mice

    No full text
    Objective: Oxidative stress contributes to myonecrosis in the dystrophin-deficient fibers of mdx mice and in Duchenne's muscular dystrophy. We examined the effects of ascorbic acid (AA), an antioxidant and free radical scavenger, on the dystrophic diaphragm muscle. Methods: Mdx mice (14 d old) received AA for 14 d. Control mdx mice received saline. The muscle damage was visualized by the penetration of Evans blue dye into myofibers and the extent of inflammation was assessed by histologic analysis. Creatine kinase levels were measured for the biochemical evaluation of muscle fiber degeneration. The levels of tumor necrosis factor-alpha (a proinflammatory cytokine) and 4-hydroxynonenal (a marker of lipid peroxidation) were analyzed by immunoblotting. Results: Ascorbic acid decreased creatine kinase levels, myonecrosis, inflammation, and the levels of tumor necrosis factor-alpha and 4-hydroxynonenal. Conclusion: The present results suggest that AA plays a protective role in dystrophic muscle degeneration, possibly by decreasing reactive oxygen species, and support further investigations of AA as a potential therapy for dystrophinopathies286686690CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP302006/09-5; 301386/07-2sem informaçãosem informaçã

    Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment

    No full text
    corecore