159 research outputs found
Addressing Content, Convergent and Predictive Validity of Implicit Pain-Related Fear in Chronic Low Back Pain
Chronic low back pain (CLBP) is a common condition that can lead to emotional distress and physical disability. Fear of pain, a phobic-like response to pain, can contribute to significant avoidance behavior and is associated with disrupted physical and emotional functioning. While questionnaires remain the standard for measurement of pain-related fear, recent work has explored the use of implicit methods. This study aimed to use an implicit measure, the Implicit Relational Assessment Procedure (IRAP), to assess convergent and predictive validity of implicit pain-related fear in relation to explicit self-report measures. Seventy-four participants with CLBP were recruited and completed the pain-related fear IRAP, along with self-report measures of pain-related fear, distress, and disability, as well as three physical performance tasks. Both explicit and implicit biases were demonstrated in participants, suggesting the presence of pain-related fear, however, implicit pain-related fear failed to demonstrate convergent and predictive validity. Therefore, implicit pain-related fear, while present in patients with CLBP, may not provide additional utility above and beyond explicit measures of pain-related fear
Recommended from our members
Malaria Control in South Africa 2000–2010: Beyond MDG6
Background: Malaria is one of the key targets within Goal 6 of the Millennium Development Goals (MDGs), whereby the disease needs to be halted and reversed by the year 2015. Several other international targets have been set, however the MDGs are universally accepted, hence it is the focus of this manuscript. Methods: An assessment was undertaken to determine the progress South Africa has made against the malaria target of MDG Goal 6. Data were analyzed for the period 2000 until 2010 and verified after municipal boundary changes in some of South Africa’s districts and subsequent to verifying actual residence of malaria positive cases. Results: South Africa has made significant progress in controlling malaria transmission over the past decade; malaria cases declined by 89.41% (63663 in 2000 vs 6741 in 2010) and deaths decreased by 85.4% (453 vs 66) in the year 2000 compared to the year 2010. Coupled with this, malaria cases among children under five years of age have also declined by 93% (6791 in 2000 vs 451 in 2010). This has resulted in South Africa achieving and exceeding the malaria target of the MDGs. A series of interventions have attributed to this decrease, these include: drug policy change from monotherapy to artemisinin combination therapy, insecticide change from pyrethroids back to DDT; cross border collaboration (South Africa with Mozambique and Swaziland through the Lubombo Spatial Development Initiative– LSDI) and financial investment in malaria control. The KwaZulu-Natal Province has seen the largest reduction in malaria cases and deaths (99.1% cases- 41786 vs 380; and 98.5% deaths 340 vs 5), when comparing the year 2000 with 2010. The Limpopo Province recorded the lowest reduction in malaria cases compared to the other malaria endemic provinces (56.1% reduction- 9487 vs 4174; when comparing 2000 to 2010). Conclusions: South Africa is well positioned to move beyond the malaria target of the MDGs and progress towards elimination. However, in addition to its existing interventions, the country will need to sustain its financing for malaria control and support programmed reorientation towards elimination and scale up active surveillance coupled with treatment at the community level. Moreover cross-border malaria collaboration needs to be sustained and scaled up to prevent the re-introduction of malaria into the country
De-Risking Pretreatment of Microalgae To Produce Fuels and Chemical Co-Products
Conversion of microalgae to renewable fuels and chemical co-products by pretreating and fractionation holds promise as an algal biorefinery concept, but a better understanding of the pretreatment performance as a function of algae strain and composition is necessary to de-risk algae conversion operations. Similarly, there are few examples of algae pretreatment at scales larger than the bench scale. This work aims to de-risk algal biorefinery operations by evaluating the pretreatment performance across nine different microalgae samples and five different pretreatment methods at small (5 mL) scale and further de-risk the operation by scaling pretreatment for one species to the 80 L scale. The pretreatment performance was evaluated by solubilization of feedstock carbon and nitrogen [as total organic carbon (TOC) and total nitrogen (TN)] into the aqueous hydrolysate and extractability of lipids [as fatty acid methyl esters (FAMEs)] from the pretreated solids. A range of responses was noted among the algae samples across pretreatments, with the current dilute Brønsted acid pretreatment using H₂SO₄ being the most consistent and robust. This pretreatment produced TOC yields to the hydrolysate ranging from 27.7 to 51.1%, TN yields ranging from 12.3 to 76.2%, and FAME yields ranging from 57.9 to 89.9%. In contrast, the other explored pretreatments (other dilute acid pretreatments, dilute alkali pretreatment with NaOH, enzymatic pretreatment, and flash hydrolysis) produced lower or more variable yields across the three metrics. In light of the greater consistency across samples for dilute acid pretreatment, this method was scaled to 80 L to demonstrate scalability with microalgae feedstocks
Fire Affects Ecophysiology and Community Dynamics of Central Wisconsin Oak Forest Regeneration
In order to understand better the ecophysiological differences among competing species that might influence competitive interactions after, or in the absence of, fire, we examined the response to fire of four sympatric woody species found in intermediatesized gaps in a 30-yr-old mixed-oak forest in central Wisconsin. Selected blocks in the forest were burned in April 1987 by a low-intensity controlled surface fire. The fire had significant effects during the following growing season on community structure, foliar nutrient concentrations, and photosynthesis. Acer rubrum seedling density declined by 70%
following the fire, while percent cover increased several-fold in Rubus allegheniensis. In general, leaf concentrations of N, P, and K were increased by the fire in all species, although the relative enhancement decreased as the growing season progressed. Daily maximum photosynthetic rates were 30-50% higher in burned than unburned sites for Prunus serotina,
Quercus ellipsoidalis, and R. allegheniensis, but did not differ between treatments for A. rubrum. Mean sunlit photosynthetic rates and leaf conductances were stimulated by the burn for all species, with the greatest enhancement in photosynthesis measured in Q. ellipsoidalis. Leaf gas exchange in R. allegheniensis was most sensitive to declining leaf
water potential and elevated vapor pressure gradient, with Q. ellipsoidalis the least sensitive. Fire had no discernable effect on water status of these plants during a year of relatively high rainfall. In comparison with other species, A. rubrum seedlings responded negatively after fire-both in terms of survival/reproduction (decline in the number of individuals)
and relative leaf physiological performance. Fire enhanced the abundance of R. allegheniensis and the potential photosynthetic performance of R. allegheniensis, P. serotina, and particularly Q. ellipsoidalis. We conclude that post-fire stimulation of net photosynthesis and conductance was largely the result of enhanced leaf N concentrations in these species
Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential
We present a detailed numerical study of the effect of a disordered potential
on a confined one-dimensional Bose-Einstein condensate, in the framework of a
mean-field description. For repulsive interactions, we consider the
Thomas-Fermi and Gaussian limits and for attractive interactions the behavior
of soliton solutions. We find that the disorder average spatial extension of
the stationary density profile decreases with an increasing strength of the
disordered potential both for repulsive and attractive interactions among
bosons. In the Thomas Fermi limit, the suppression of transport is accompanied
by a strong localization of the bosons around the state k=0 in momentum space.
The time dependent density profiles differ considerably in the cases we have
considered. For attractive Bose-Einstein condensates, a bright soliton exists
with an overall unchanged shape, but a disorder dependent width. For weak
disorder, the soliton moves on and for a stronger disorder, it bounces back and
forth between high potential barriers.Comment: 13 pages, 13 figures, few typos correcte
CGRPα-Expressing Sensory Neurons Respond to Stimuli that Evoke Sensations of Pain and Itch
Calcitonin gene-related peptide (CGRPα, encoded by Calca) is a classic marker of nociceptive dorsal root ganglia (DRG) neurons. Despite years of research, it is unclear what stimuli these neurons detect in vitro or in vivo. To facilitate functional studies of these neurons, we genetically targeted an axonal tracer (farnesylated enhanced green fluorescent protein; GFP) and a LoxP-stopped cell ablation construct (human diphtheria toxin receptor; DTR) to the Calca locus. In culture, 10–50% (depending on ligand) of all CGRPα-GFP-positive (+) neurons responded to capsaicin, mustard oil, menthol, acidic pH, ATP, and pruritogens (histamine and chloroquine), suggesting a role for peptidergic neurons in detecting noxious stimuli and itch. In contrast, few (2.2±1.3%) CGRPα-GFP+ neurons responded to the TRPM8-selective cooling agent icilin. In adult mice, CGRPα-GFP+ cell bodies were located in the DRG, spinal cord (motor neurons and dorsal horn neurons), brain and thyroid—reproducibly marking all cell types known to express Calca. Half of all CGRPα-GFP+ DRG neurons expressed TRPV1, ∼25% expressed neurofilament-200, <10% contained nonpeptidergic markers (IB4 and Prostatic acid phosphatase) and almost none (<1%) expressed TRPM8. CGRPα-GFP+ neurons innervated the dorsal spinal cord and innervated cutaneous and visceral tissues. This included nerve endings in the epidermis and on guard hairs. Our study provides direct evidence that CGRPα+ DRG neurons respond to agonists that evoke pain and itch and constitute a sensory circuit that is largely distinct from nonpeptidergic circuits and TRPM8+/cool temperature circuits. In future studies, it should be possible to conditionally ablate CGRPα-expressing neurons to evaluate sensory and non-sensory functions for these neurons
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Transmission of Vibrio cholerae Is Antagonized by Lytic Phage and Entry into the Aquatic Environment
Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water—the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment
- …