100 research outputs found

    Learning to Role-Switch in Multi-Robot Systems

    Get PDF
    We present an approach that uses Q-learning on individual robotic agents, for coordinating a mission-tasked team of robots in a complex scenario. To reduce the size of the state space, actions are grouped into sets of related behaviors called roles and represented as behavioral assemblages. A role is a Finite State Automata such as Forager, where the behaviors and their sequencing for finding objects, collecting them, and returning them are already encoded and do not have to be relearned. Each robot starts out with the same set of possible roles to play, the same perceptual hardware for coordination, and no contact other than perception regarding other members of the team. Over the course of training, a team of Q-learning robots will converge to solutions that best the performance of a well-designed handcrafted homogeneous team

    An Autopsy Study Describing Causes of Death and Comparing Clinico-Pathological Findings among Hospitalized Patients in Kampala, Uganda

    Get PDF
    Background: Information on causes of death in HIV-infected patients in Sub-Saharan Africa is mainly derived from observational cohort and verbal autopsy studies. Autopsy is the gold standard to ascertain cause of death. We conducted an autopsy study to describe and compare the clinical and autopsy causes of death and contributory findings in hospitalized HIV-infected and HIV-uninfected patients in Uganda. Methods: Between May and September 2009 a complete autopsy was performed on patients that died on a combined infectious diseases gastroenterology ward in Mulago Hospital in Kampala, Uganda. Autopsy cause of death and contributing findings were based on the macro- and microscopic post-mortem findings combined with clinical information. Clinical diagnoses were reported by the ward doctor and classified as confirmed, highly suspected, considered or not considered, based on information derived from the medical chart. Results are reported according to HIV serostatus. Results: Fifty-three complete autopsies were performed in 66 % HIV-positive, 21 % HIV-negative and 13 % patients with an unknown HIV serological status. Infectious diseases caused death in 83 % of HIV-positive patients, with disseminated TB as the main diagnosis causing 37 % of deaths. The spectrum of illness and causes of death were substantially different betwee

    The positive effect of plant diversity on soil carbon depends on climate

    Get PDF
    Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates

    Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4007, doi:10.1029/2003PA001000.An analysis of sedimentary nitrogen isotope records compiled from widely distributed marine environments emphasizes the global synchrony of denitrification changes and provides evidence for a strong temporal coupling of these variations to changes in nitrogen fixation as previously inferred. We explain the global coherence of these records by a simple physical control on the flux of dissolved oxygen to suboxic zones and the coupling to fixation via the supply of phosphorus to diazotrophs in suitable environments. According to our hypothesis, lower glacial-stage sea surface temperature increased oxygen solubility, while stronger winds in high-latitude regions enhanced the rate of thermocline ventilation. The resultant colder, rapidly flushed thermocline lessened the spatial extent of denitrification and, consequently, N fixation. During warm periods, sluggish circulation of warmer, less oxygen rich thermocline waters caused expansion of denitrification zones and a concomitant increase in N fixation. Local fluctuations in export productivity would have modulated this global signal.Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada and by a WHOI postdoctoral fellowship to MK

    DNA Fingerprinting of Pearls to Determine Their Origins

    Get PDF
    We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry

    A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    Get PDF
    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry

    Association of Chronic Hepatitis C Infection With T-Cell Phenotypes in HIV-Negative and HIV-Positive Women

    Get PDF
    Background: Hepatitis C virus (HCV) viremia is thought to have broad systemic effects on the cellular immune system that go beyond its impact on just those T cells that are HCV specific. However, previous studies of chronic HCV and circulating T-cell subsets (activation and differentiation phenotypes) in HIV negatives used general population controls, rather than a risk-appropriate comparison group. Studies in HIV positives did not address overall immune status (total CD4 + count). Methods: We used fresh blood from HIV-positive and at-risk HIVnegative women, with and without chronic HCV, to measure percentages of activated CD4 + and CD8 + T cells, Tregs, and T-cell differentiation phenotypes (naive, central memory, effector memory (EM), and terminally differentiated effector). This included 158 HIV negatives and 464 HIV positives, of whom 18 and 63, respectively, were HCV viremic. Results: In multivariate models of HIV negatives, HCV viremia was associated with 25% fewer naive CD4 + (P = 0.03), 33% more EM CD4 + (P = 0.0002), and 37% fewer central memory CD8 + (P = 0.02) T cells. Among HIV positives, we observed only 1 of these 3 relationships: higher percentage of EM CD4 + among HCV viremic women. Furthermore, the association with EM CD4 + among HIV positives was limited to individuals with diminished immune status (total CD4 + count #500 cells/mL), as were associations of HCV viremia with higher percentages of activated CD4 + and Tregs. Among HIV positives with high CD4 + count, no significant associations were observed. Conclusions: These data suggest that HCV viremia in HIV negatives is associated with accelerated T-cell differentiation, but among HIV positives, the impact of HCV viremia is less straightforward and varies by total CD4 + count
    • 

    corecore