

1

Learning to Role-Switch in Multi-Robot Systems

Eric Martinson and Ronald C. Arkin

Mobile Robot Laboratory
Georgia Institute of Technology

College of Computing
Atlanta, GA 30332-0280

{ebeowulf,arkin}@cc.gatech.edu

Abstract

 We present an approach that uses Q-learning on
individual robotic agents, for coordinating a mission-
tasked team of robots in a complex scenario. To reduce
the size of the state space, actions are grouped into sets of
related behaviors called roles and represented as
behavioral assemblages. A role is a Finite State Automata
such as Forager, where the behaviors and their
sequencing for finding objects, collecting them, and
returning them are already encoded and do not have to be
relearned. Each robot starts out with the same set of
possible roles to play, te same perceptual hardware for
coordination, and no contact other than perception
regarding other members of the team. Over the course of
training, a team of Q-learning robots will converge to
solutions that best the performance of a well-designed
handcrafted homogeneous team.

Index terms: Multi-Robot Systems, Role-Switching, Q-
learning.

1. Introduction

When a team of people is selected to perform a
complex task, they usually start by breaking the task up
into smaller pieces, and assigning jobs, or roles, to each
team member. The reason for using roles is that, while
each person on the team may be capable of handling any
one of the designated roles, when combined, the task is
too difficult for any one person. By selecting a group of
people who are able to perform any of the roles, the
performance of the team can be maximized for a scenario.
If one of the roles proves to be useless at a given time, a
team member can switch to another role to speed up the
completion time of the entire team’s mission.

The same concepts can be applied to a team of
homogeneous robots. As with people, the use of a
homogeneous team allows robots to switch between roles
with no penalty. Robots can switch roles to fill in for
critical positions as needed, and switch out of roles that
are not being used at that time. The challenge from a
robotics perspective is to determine when role switching
is advantageous to the team, versus remaining in their
current roles. In this paper, the use of Q-learning as a
role-switching mechanism in a foraging task is studied.
Each robot in the team, with no inter-robot

communication, learns when to switch, and what role to
switch to, given the perceptual state of the world.

There are several goals to this research. First, we
hope to demonstrate that the complexity problems usually
associated with Q-learning [17] in complex scenarios can
be overcome by using role-switching. Furthermore,
despite the apparent oversimplification of the action space
that this entails, robot teams using the Q-learning
algorithm are shown to demonstrate an advantage over
hand-crafted methods, at least for the scenarios studied.
The second goal is to explore the dimensions of this
multi-agent domain. By using independent Q-learning
functions, it can be evaluated how important the reward
function is versus the team size versus the environmental
complexity.

This research is part of the ongoing DARPA Mobile
Autonomous Robot Software (MARS) program. The
overall project focuses on multi-level learning in hybrid
deliberative/reactive architectures. Other related papers
from our laboratory relevant to this effort include
[1,8,9,13].

2. Related Work

Reinforcement Learning [16,17], as used today for
coordination in behavior-based robotics, has appeared in a
variety of tasks aimed at taking known competencies and
building more complex behavior or improved
performance. Asada et al [2] demonstrated how
reinforcement learning could learn primitive behaviors
starting from sensory information. Their soccer robot
started with little capability and used visual input to learn
how to shoot a soccer ball at a goal. Instead of starting
from scratch, work by Mahadevan and Connell [11]
exploited the success of already developed primitive
behaviors to learn a task. Their robot used Q-learning to
learn how to push boxes around a room without getting
stuck. Martinson et al [13], worked with even higher
levels of abstraction, to coordinate high-level behavioral
assemblages in their robots to learn finite state automata
in an intercept scenario.

By continuing to increase the level of abstraction,
potentially an entire finite state automata (FSA) could be
coordinated using a reinforcement learning mechanism.
Diettrich [5], in his work on Hierarchical Reinforcement
Learning with MAXQ, alludes to the possibility, as does
the work by Martinson et al [13]. In this paper, each Q-
learner is coordinating a set of roles as described by an

 2

Figure 1. A team of robots in a cluster on the right are
trying reach the patch of mines at the top of the screen and
return them to the base at the bottom. An enemy robot
waits for them on the lower left.

FSA, to learn complex tasks with many requisite
subtasks.

Work by Balch [2] in his Ph.D. thesis, combined a
number of these elements within a system to learn roles.
His multi-agent homogeneous teams were used to study
reward functions that resulted in the most diverse
behaviors, or degree of specialization, among agents.
These learned specializations are analogous to roles as
defined in this work.

The concept of roles, and role switching, however, is
not limited to the machine learning domain. In particular,
robotic soccer has been a popular test bed for role playing
robots [4,12]. Robots are crafted to play forward,
defender, goalie etc. as do human soccer teams. Role
switching is relatively common, as robots that end up on
the wrong side of the field might assume a new role to
maximize their performance at their new location. Work
by Stone and Veloso [14] in particular, has robots
assuming new roles in the team depending upon the
global strategy selected. It requires significant
communication among the robots to periodically
determine which strategy is selected, and which roles
need to be assumed.

3. Overview of Q-learning

Probably the most widely used reinforcement

learning method for robotic systems is Q-Learning [16].
This is largely due to its algorithmic simplicity and the
ease of transitioning from a state value function to an
optimal control policy by choosing in every state the
action with the highest value. Following Kaelbling's
approach [7], at every time step the robot perceives the
perceptual state s. Based on this information the robot
chooses an action a and executes it. The utility of this
action is communicated to the robot through a scalar
reinforcement value r. The goal of the robot is to choose
actions that, in the long run, maximize the sum of the
reinforcement value.

Let S be the set of distinct internal states that the
robot can be in and let A be the set of actions that the
robot can take. Let T(s,a,s') be the probability of
transitioning from state s to state s' using action a. If we
are given a world model defined by the transition
probabilities and the reward function R(s,a) we can
compute an optimal deterministic stationary policy using
techniques from dynamic programming (e.g. Value
Iteration or Policy Iteration[7]).

It is usually the case, however, that a world model is
not known in advance and the robot needs to learn this
model and simultaneously construct an optimal policy.
Q-learning is an algorithm that does just that. Let Q(s,a)
be the expected value of the discounted reinforcement of
taking action a in state s. The value of this quantity can be
estimated recursively with the following formula:

The optimal policy in this case is:

 In other words, the best policy is, in each state, to take
the action with the largest Q-value. Thus the Q-function
makes the actions explicit, which allows us to compute
them on-line using the following Q-learning update rule:

 where α is the learning rate, and γ is the discount factor
(0 ≤ γ < 1). It can be proven [17] that this formula
converges if each action is executed in each state an
infinite number of times and α is decayed appropriately.
For a more detailed discussion of Q-learning, the reader is
referred to [7,17].

4. Mission Scenario

The scenario chosen is a foraging task in a hostile
environment. Anti-Tank mines are scattered about the
simulation. A team of robots is expected to collect all of
the mines and drop them in a designated storage area. It
is assumed that the robots know how to safely handle the
explosive ordinance.

However, in addition to the forage task, the robot
team is faced with a variety of hazards from the
environment. First off, the robots are not perfectly able to
navigate within the environment. Unknown terrain can
leave robots stuck in shallow locations, or mud pits,
preventing them from moving. This is modeled in the
simulation as a random occurrence for each robot, where
the maximum allowable time between environmental
hazards is specified at startup for each map.

()),(),(max),(),(asQasQrasQasQ −′′++= γα

∑ ′′′+=
′

),(*max),,(),(),(* asQsasTasRasQ
a

γ

),(*maxarg* asQpi
a

=

Enemy

Home Base

Robot Team

Mine Patch

Obstacle

 3

The second type of hazard is a mobile enemy hiding
in the surrounding environment. If the mobile enemy is
not successfully intercepted by one of the team robots,
then it will find the nearest robot and "kill" that robot.
The "killed" robot becomes stuck in a fixed location until
assisted by another robot. When an enemy has "killed" a
robot, it retreats to a random location around the edge of
the map and waits to attack again. When the robot is
either in close proximity (0.1m) to an enemy, or is subject
to a random hazard, then it signals the environment that it
has died, changes color, and transitions to a STOP action.

All of the programming, and experimental testing
described in this paper was performed in the Missionlab
mission specification [10] environment.

4.1 Q-learning Function

The Q-learning function in Missionlab is used on

each member of the robot team as a decision-making
function for picking the appropriate role (action), based
on the perceptual state of the world and the action
currently being executed by the Q-learning function. The
actions available to each robot are three distinct Finite
State Automata that each encapsulate one role: Forager,
Soldier, or Mechanic. The perceptual state of the world
is represented by a set of four boolean perceptual triggers:
Detect_Enemy, Is_Invasion, Detect_Dead, and Is_DieOff.
Since a combined state-action pair determines the internal
state of the Q-learner, there are 48 possible internal states
for the Q-learner. 21 of these 48 internal states are not
feasible, because two of the triggers are conditionally
dependent on other triggers.

To make decisions, and to learn how successful the
robot has been, it is rewarded when either of two events
happen. If the robot successfully drops a mine off at the
base, then it is rewarded. If the robot successfully aids a
dead robot while in the Mechanic role, then it is also
rewarded. For most of the experiments, the values of 20
and 10 respectively were used. These reward values were
selected for testing after experimenting with different
ratios of reward functions.

4.2. Perceptual Triggers

The perceptual triggers used by the Q-learning
function all make decisions based on input from a visual
sensor. Detect_Enemy and Detect_Dead are represented
by the DETECT_OBJECT primitive in Missionlab. In
simulation, red objects represent Enemies, while yellow
objects represent dead or stuck robots. If one of these
objects is within 30.0 m of the robot, then the trigger
value is TRUE. In the real robot experiments, any object
recognized as a dead robot or an enemy, falls well within
the 30.0m limit imposed in the simulation.

The remaining two triggers, Is_Invasion, and
Is_DieOff, also use different visual inputs. Is_Invasion
takes red enemy objects as stimuli, while Is_DieOff reacts
to yellow (dead) robots. The purpose of this routine is to
trigger TRUE when either an object is very close to the
robot, or when there are several such objects within range

of detection. The impact of an object on the state of the
trigger falls off with 1/r2. The following code describes
the behavior of these triggers:

The safety_margin indicates the range at which any
input causes the trigger to become true. For example, if
one enemy is detected at a radius less than the safety
margin, then the Is_Invasion trigger is guaranteed to be
TRUE.

These four triggers are not independent of each other.
If Is_Invasion is true, indicating a close enemy or lots of
enemies, then Detect_Enemy has to be true as well
because at least one enemy has been detected. However,
if an enemy is detected at the edge of the sensor range,
then Detect_Enemy is true, but Is_Invasion is not. The
reason for this decision was to differentiate between
distant and immediate concerns.

4.3 Behavioral Actions

The robots can successfully complete each mission,
by utilizing a set of Finite State Automata as actions.
Each FSA corresponds to a role: SOLDIER,
MECHANIC, or FORAGER. Each role contains a
fraction of the behaviors necessary for completing the
scenario successfully. A robot team can complete
foraging, and overcome all of the hazards only by either
switching between roles, or by utilizing a heterogeneous
team.

All of the movement behaviors described in the
following section include an AVIOD_OBSTACLE
primitive in the weighted summation.

4.3.1 SOLDIER Role

The SOLDIER (Figure 2) allows a robot to defend
itself in the presence of enemies. When no enemies are
detected, a robot using the SOLDIER role executes a herd
following behavior, HERDING. HERDING is a
weighted summation of AVOID_OBSTACLES,
WANDER, and MOVE_TO behaviors, where the goal is
the center of the group of robots. If an enemy is detected,
then a robot in the SOLDIER role transitions to an
INTERCEPT behavior, where the robot moves to the
nearest distance intercept point with the enemy. When an
enemy is successfully intercepted, it is removed by the
environment and relocated. The SOLDIER then
transitions back to a HERDING behavior. It needs to be
noted that a robot in the SOLDIER role is still vulnerable
to the random terrain hazards.





≤
>

=

=

=

∑
=

THRESHsumFALSE
THRESHsumTRUE

output

inputtodistsum

inmsafetyTHRESH
inputnum

i
i

,
,

__/10000

arg_/10000
_

0

2

2

 4

4.3.2 MECHANIC Role
The MECHANIC role (Figure 3) allows robots to

assist stuck robots (as indicated by changed color),
including those killed by an enemy and affected by an
environmental hazard. As with the SOLDIER role, when
no stuck robots are detected, the MECHANIC executes
the HERDING behavior. When a robot in the
MECHANIC role detects a stuck robot, it executes a
MOVE_TO_OBJECT behavior with the dead robot as the
desired object. When the MECHANIC robot is near the
stuck robot, it "fixes" the disabled robot. In simulation,
this is done through message passing. On this real robot
this is done by bumping, or pushing the stuck robot.

4.3.3 FORAGER Role

A robot that has assumed the FORAGER role (Figure
[4]) will search for and collect Anti-Tank mines. This is
the task with the most number of intermediate states.
Robots in the FORAGER role are involved with three
different types of visual objects. The first, mines, are

located typically in patches around the environment. The
motivation for patches was the belief that over very large
areas, if you find one mine then there is likely to be others
not to far away. The second type of visual object, the
base, is statically located and serves as a collection point
for the mines. The third, markers, are placed by a
FORAGER robot near a found mine to indicate the
presence of a possible patch to all robots.

A FORAGER which is not currently holding a mine,
and which cannot detect any markers, starts off in the
FIND_OBJECT behavior. FIND_OBJECT is a sub-FSA
for finding, and placing markers next to the desired
object. Within the sub-FSA FIND_OBJECT, if there are
no mines visible, then a robot executes an EXPLORE
behavior. EXPLORE is a weighted summation of
AVOID_PAST, AVOID_OBSTACLES, and WANDER.
When the robot detects a mine, it places a visual marker
in the environment that can be detected by all robots, and
leaves the FIND_OBJECT behavior.

When the FORAGER can detect a marker, it executes
a MOVE_TO_OBJECT behavior with the marker as the
desired object. When the robot is NEAR the marker (less
than 0.1 m), then it leaves the MOVE_TO_OBJECT
behavior. If there are no mines visible, then the robot
removes the visual marker, and returns to the
FIND_OBJECT behavior. If there is a mine, then the
robot transitions to a COLLECT_OBJECT behavior.

The COLLECT_OBJECT behavior is a sub-FSA for
picking up mines and returning them to the base. The
sub-FSA includes in the following succession:
MOVE_TO_OBJECT (object = mine),
PICKUP_OBJECT, and MOVE_TO_GOAL, with the
goal being the last known location of the base. Every
time the base is detected visually, its location in memory
is updated.. At the base, the robot drops off the mine

Figure 4. Forager Role. A robot explores the environment
using Avoid_Past until it finds a mine. Then it drops a
marker, collects the mine, and returns to the base. After
dropping off the mine, it moves to the nearest marker and
begins looking for mines again. If no mines are present, it
removes the marker, and returns to exploring.

Figure 3. Mechanic Role. The robot stays close to the
group center, but moves to dead robots when one
becomes visible and fixes it.

Figure 2. Soldier Role. The robot stays close to the
group center, but moves to the nearest distance
intercept when it detects an interceptable enemy

 5

(DROP_IN_BASKET) and leaves the
COLLECT_OBJECT behavior. If no marker is detected,
then the robot transitions to FIND_OBJECT, otherwise it
moves to the marker.

5. Simulation Results

To test the robots, the Q-learning function is located

within another FSA for each individual robot. When the
robot is initially started, it signals the MissionLab console
that it is active and loads the parameters for random
hazards. When the robot is either touched by an enemy,
or is subject to a random hazard, then it signals the
environment that it has died, changes color, and
transitions to a STOP action. At this point, the Q-learning
function is no longer executing. When the robot is aided
by another robot touching it, then it changes color to blue,
signals that it is again active, and loads the Q-learning
function again from the beginning. The Q-learner does
not have to select the last role it was executing before it
died.

5.1 Performance Metric
The success of a robot team is judged by the number

of iterations the simulation steps through, before all of the
mines are removed from a map. The faster a team
collects all of the mines, the better the team is judged to
have performed.

Sometimes, however, every robot on the team has
died before removing the last mine on a map. In this
case, the simulation is allowed to run up to 1,000,000
iterations before stopping the test. Since most runs
complete before 300,000 iterations have passed, it is
highly unlikely that a team will take up to 1,000,000
iterations to complete a map. Therefore in the case of
failure, the simulation is judged to have taken the full
1,000,000 steps.

5.2 Hand Coded vs. Q-learn
Teams of 6 Q-learning robots were tested against two

types of handcrafted teams. The first type of team used
fixed role assignments. Robots were selected to play a
particular role for the duration of the scenario. Two
different teams were tested. The first team was composed
of 3 Foragers, 1 Soldier, and 2 Mechanics. The second

team tested used 2 of each role. This second team was
found to successfully complete more scenarios than the
first.

The second type of handcrafted team was a
homogenous team, with handcrafted rules for role-
switching. In this case, the default role was FORAGER.
However, a robot would switch to SOLDIER in the
presence of an enemy, and would switch to MECHANIC
whenever a dead robot was detected.

Map # of Mines Marked? # of Patches
1 21 Y* 4
2 146 N 4
3 11 N 1
4 21 Y 1
5 51 Y 3

6** 16 N 1
7 35 N 35

(*) - One patch is marked, while others have to be
found
(**) - Environment is an obstacle field

Table [1] shows the information for each of the maps
used in this testing. The maps varied in the number of
mines present, whether the location of those mines was
initially marked, and how many patches existed on the
screen. The mines were not guaranteed to be evenly
distributed among the patches.

On all but one of these maps, the heterogeneous
teams required more iterations to complete the scenario
than the other teams. Map 4 was an exception, for the
heterogeneous team with 3 foragers. In that map, the
mines are all marked, and not far from the base so it was
able to clear the mines quickly and efficiently.

The homogeneous team, however, demonstrated
exceptional performance on all of the maps. It required
fewer iterations on average to complete the scenarios than
either the Q-learning team, or the Heterogeneous teams.

The success of the Homogeneous team does not
indicate failure for the Q-learning team. The values of the

Table 1. Map Information

-

Figure 5. Comparison of Hand Crafted T eams vs. Q
Teams.

Figure 6. By choosing the optimal values of the Q-learning
team for each map, the performance of the Q-learning
team can be an order of magnitude greater than that of the
homogeneous team.

 6

learning rate, exploration rate, and exploration decay were
held static for the Q-learning team in Figure [5], but Q-
learning depends on selecting the best values for the task.
Just using the arbitrarily chosen values, the Q-learning
team completed the task in fewer iterations than the
Heterogenous teams, and except on map 1, in less than 10
times the number of iterations required by the
Homogeneous team. This includes the maps on which the
Q-learning algorithm was trained.

Map Learning

Rate
Exploration
Rate

Exploration
Decay

1 .3 .1 .98
2 .1 .3 .99
3 .3 .2 .1
4 .1 .3 .98
5 .1 .2 .9995
6 .1 .5 .9995
7 .1 .3 .99

Table 2. Q-learning parameters which achieved the best
performance on each of the maps.

A second batch of tests were performed to tune the
values for each of the environments. The results are
displayed in Figure [6]. They show that given the optimal
values, the Q-learning team can ultimately match or beat
the performance of the Homogeneous team. Table [2]
contains the values which achieved the best performance
for each map.

5.3 Reward vs. Team Size

The second battery of tests focused on exploring reward
function and team size in a variety of environments. 5
different reward function variations were tested with 6
team sizes on 7 different maps.

5.3.1 Number of Robots

The first study probed for the ideal number of robots

in colony undertaking this task. The intuitive reaction is
the more the better. However, at some point adding more
robots is not going to improve the performance of the
entire colony. Mataric’s analysis of interference has
previously explored this phenomenon [6]. This is
demonstrated by the graph in Figure [7]. The dashed line
displays the averages observed during the testing. The
error bars indicate the minimum and maximum values
observed for each team size. The solid line is a simple
exponent of the form:

Where:

The purpose of this curve is just to demonstrate the
exponential properties of the performance vs. team size
relation in this scenario for these numbers of robots. At
some point, the performance of the team does not increase
by adding more robots.

5.3.2 Exploring the Reward Space

The second interesting phenomenon demonstrated by
the graph in Figure [7], is the unimportance of the
rewards applied relative to the size of the team.

Each team was tested with 5 different reward
functions. The different reward functions were designed
to compare the importance of being rewarded for fixing
robots, vs. being rewarded for collecting mines. It was
expected that the performance of the team was strongly
dependent on the selection of an appropriate reward
function. Such a result would be consistent with other

work in the area of heterogeneous reward functions[14].
Table [3] has the actual reward ratios used for each
function.

Fixed Robot Collected Mine
50 10
20 10
20 20
10 20
10 50

Table 3. Reward values used in each reward function.

The reward function variation is displayed as error
bars in Figure[7]. The minimum and maximum values
seen by each size team, are indicated by the endpoints of
the error bars. The size of the team causes an exponential
drop-off in the number of iterations required to complete
the map, while the change in the reward function only
makes local changes about this curve.

For teams up to 12 robots, the importance of
selecting the right relationship between the dual rewards
is not as important as selecting a larger team. This may
change with larger team sizes as the robots begin to
interfere with each other.

1.1,16.,10091,6.99 =−=== ZMKC

MXZKCxf **)(=

Figure 7. Average Performance of Q-learning team as
team size is changed. Dashed line indicates actual
measurements, with the error bars indicating variations
due to different reward functions within each group.
The solid line indicates the values predicted by an
exponential decay.

 7

6. Robotic Results

The robots used in this work are a pair of 2 Pioneer2-
DXE robots made by ActivMedia. Each robot is
equipped with an onboard computer and forward and rear
sonar for obstacle avoidance. The vision system consists
of a Sony XC999 camera with a wide angle lens,
connected to a NewtonLabs Cognachrome system for
color blob detection. Finally, an electromagnet was
attached in the front for picking up metal objects for the
foraging task.

For visual object detection, each of the relevant
objects (enemies, home base, dead robots, and mines) was
identified using a unique 3-color bar code mounted on a
vertical pole. Markers, as used in the simulation, were
not used in the real experiments because the robot could
see a “mine” from anywhere inside the 12’x16’ testing
area. Using the cognachrome vision system, a robot
could determine the bearing to an object and estimate its
distance for use with the perceptual triggers.

For the FORAGER role, robots retrieved metal
objects from a platform around the “mine” pole (see
Figure [8]). These were then dropped off at a base
identified by another pole. Enemies were portrayed by an
AmigoBot robot, also made by ActivMedia, remotely
controlled by a human operator. When a SOLDIER
detects the enemy, it moves to intercept it. The human
operator does not let the two robots actually touch, but
removes the enemy after an intercept. Finally, a robot in
the MECHANIC role moves to and bumps robots
displaying the “dead robot” pole. A human operator is in
charge of placing and removing the “dead robot” pole.
The goal behind the experimentation with real robots was
to verify that the results learned from the simulation
environment could be transferred directly to a team of real
robots.

The simulation results from a two robot training
session were selected for running on the real robot team.
The learned policy was as follows for the first robot:

Role % Chosen Only Common States
Forager 18.5 25.0
Mechanic 37.0 41.7
Soldier 44.5 33.3

And for the second robot:

Role % Chosen Only Common States
Forager 51.9 66.7
Mechanic 22.2 8.3
Soldier 25.9 25.0

The first column, % Chosen, indicates the number of

states in which the robot would select that role over all
feasible states. The second column, Only Common
States, is the percentage of feasible states where
isInvasion, and isDieOff, are false where that role is
selected. The reasoning for the second column is that the
isInvasion and isDieOff triggers occur infrequently as
they require a close proximity to the interesting object. In
general, the first robot stays in the SOLDIER and
MECHANIC roles, while the second robot stays in the
FORAGER role.

When placed onto the real robots, the simulation code
worked as predicted. The second robot stuck to the
forager role, collecting and returning objects to the base,
while the first robot stayed in the soldier role and watched
for enemies. When an enemy became visible, the
foraging robot became a MECHANIC and began
searching for dead robots, while the SOLDIER robot
intercepted the enemy. Figure [8] shows a demonstration
of this particular sequence of actions of the robot team.

The next step would be to learn a policy on the real
robots themselves. Nonetheless, this simple example
confirmed the simulation results indicating that more
robots need to be deployed to ensure a successful mission.
With the vision system, enemies can remain outside a
robot’s field of view for a long time, and can “kill”
foraging robots. By adding more robots, there will be
more cameras watching a larger area of the field for
potential dangers and dead robots.

S o ld ie r
R o b o t E n e m y

F o r a g e r
R o b o t

Figure 8. (left) A small enemy robot approaches the two robot team. (middle) The robot on the right is a
soldier and begins to intercept, while the second robot changes to MECHANIC and wanders away. (right) The
soldier continues to chase the enemy, while the second robot resumes foraging.

 8

7. Conclusion

First and foremost, we have demonstrated the

extension of our previous Q-learning work [13] to a
significantly more complicated action space. In the first
paper, it was put forward that Q-learning could be used at
any level of the control hierarchy. It could be used to
control low-level primitives as demonstrated in work by
Asada [2]. It could be used to control behavioral
assemblages as demonstrated in the intercept scenario.
This form of Q-learning can also be used, as postulated by
Diettrich [5], to control complex actions such as Finite
State Automata or Roles.

The second aspect that was demonstrated by this
work is the success of multiple distinct Q-learning
algorithms in a multi-robot scenario. The robot team is
not using a global reward algorithm, and it is using no
direct communication between the robots. However, the
team is still converging to a useful global output. Even
just by using the best guess values for the Q-learn
function, the results are far better than the performance of
a heterogeneous team of robots. If the values are selected
specifically for each map, then the performance of the
team can even outperform the homogeneous hand coded
solution.

Finally, this work demonstrated some interesting
aspects about a complex reward function. As suspected,
the ideal reward function should be selected on a task-by-
task basis with terrain and team information included.
However, the results indicate that the reward ratio is not
as critical to the success of the team as initially believed.
Provided that both functions are being rewarded, a best
guess for the reward ratio is good enough to clear the
mines. More important to the selection process is getting
enough robots onto the field to survive the hazards
inherent to the environment.

Acknowledgments
This research was supported under DARPA's Mobile
Autonomous Robot Software Program under contract
DASG60-99-C-0081. Approved for Public Release,
distribution unlimited.

References

1) Atrash, A. and Koenig, S., “Probabilistic Planning for

Behavior-based Robots”, (2001). Proc. FLAIRS-01,
Key West, FL., pp.531-535.

2) Asada, M., Noda, S., Tawaratsumida, S., and Hosoda,
K. (1995). “Vision-Based Reinforcement Learning
for Purposive Behavior Acquisition”, Proc. IEEE
International Conference on Robotics and
Automation, pp.146-153.

3) Balch, T. (1998). “Behavioral Diversity in Learning
Robot Teams”, Ph.D. Dissertation, College of
Computing, Georgia Tech.

4) D'Andrea, R. et al. (2000) "Big Red: The Cornell
Small League Robot Soccer Team", in Lecture Note
in Computer Science, v. 1856, p 657-660

5) Dietterich, Thomas G. {2000}. “Hierarchical
Reinforcement Learning with the MAXQ Value
Function Decomposition”, Journal of Artificial
Intelligence Research, 13, pp. 227-303

6) Dani Goldberg and Maja J Mataric´, "Interference as
a Tool for Designing and Evaluating Multi-Robot
Controllers", Proceedings, AAAI-97, Providence,
Rhode Island, Jul 27-31, 1997, 637-642.

7) Kaelbling, Leslie P., Littman, Michael L., and
Moore, Andrew W. (1996). “Reinforcement
Learning: A Survey”, Journal of Artificial
Intelligence Research, Volume 4., p. 237-285

8) Lee, J.B. and Arkin, R.C., (2001). “Learning
Momentum: Integration and Experimentation”, IEEE
International Conference on Robotics and
Automation, Seoul, Korea. May 2001. pp. 1975-1980

9) Likhachev, M. and Arkin, R.C., (2001). “Spatio-
Temporal Case-based Reasoning for Behavioral
Selection”, IEEE International Conference on
Robotics and Automation, Seoul, Korea. pp. 1627-
1634

10) MacKenzie, D. and Arkin, R., "Evaluating the
Usability of Robot Programming Toolsets", (1998).
International Journal of Robotics Research, Vol. 4,
No. 7, pp.381-401

11) Mahadevan, S. and Connell, J., (1991). “Automatic
Programming of Behavior-Based Robots Using
Reinforcement Learning”, Proc. AAAI-91, pp. 768-
73.

12) Marsalla, S. et. al. (1999) "On being a teammate:
Experiences acquired in the design of RoboCup
teams" Proceedings of the Third International
Conference on Autonomous Agents (Agents'99)

13) Martinson, E., Stoychev, A. , and Arkin, R. (2002)
"Robot Behavioral Selection Using Q-learning", to be
appear Proc. of IROS 2002, Lausanne, Switzerland,
October 2002.

14) Mataric´, Maja J. "Reward Functions for Accelerated
Learning" in Machine Learning: Proceedings of the
Eleventh International Conference, William W.
Cohen and Haym Hirsh, eds., Morgan Kaufmann
Publishers, San Francisco, CA, 1994, 181-189.

15) Stone, P. and Veloso, M. (1995). “Task
Decomposition and Dynamic Role Assignment for
Real-Time Strategic Teamwork”, Proceedings of the
5th International Workshop on Intelligent Agents V :
Agent Theories, Architectures, and Languages
(ATAL-98), Heidelberg, Germany. pages 293-308

16) Sutton, R.S. and Barto, A.G. (1998). Reinforcement
Learning: An Introduction, MIT Press, Cambridge,
Mass.

17) Watkins, C. (1989). “Learning from Delayed
Rewards”, Ph.D. Thesis, King's College, Cambridge,
UK.

