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Abstract 
   
 We present an approach that uses Q-learning on 
individual robotic agents, for coordinating a mission-
tasked team of robots in a complex scenario. To reduce 
the size of the state space, actions are grouped into sets of 
related behaviors called roles and represented as 
behavioral assemblages. A role is a Finite State Automata 
such as Forager, where the behaviors and their 
sequencing for finding objects, collecting them, and 
returning them are already encoded and do not have to be 
relearned.  Each robot starts out with the same set of 
possible roles to play, te same perceptual hardware for 
coordination, and no contact other than perception 
regarding other members of the team.  Over the course of 
training, a team of Q-learning robots will converge to 
solutions that best the performance of a well-designed 
handcrafted homogeneous team. 
 
Index terms: Multi-Robot Systems, Role-Switching, Q-
learning. 
 

1. Introduction 
 

When a team of people is selected to perform a 
complex task, they usually start by breaking the task up 
into smaller pieces, and assigning jobs, or roles, to each 
team member. The reason for using roles is that, while 
each person on the team may be capable of handling any 
one of the designated roles, when combined, the task is 
too difficult for any one person.  By selecting a group of 
people who are able to perform any of the roles, the 
performance of the team can be maximized for a scenario.  
If one of the roles proves to be useless at a given time, a 
team member can switch to another role to speed up the 
completion time of the entire team’s mission.   

The same concepts can be applied to a team of 
homogeneous robots.  As with people, the use of a 
homogeneous team allows robots to switch between roles 
with no penalty.  Robots can switch roles to fill in for 
critical positions as needed, and switch out of roles that 
are not being used at that time.  The challenge from a 
robotics perspective is to determine when role switching 
is advantageous to the team, versus remaining in their 
current roles.  In this paper, the use of Q-learning as a 
role-switching mechanism in a foraging task is studied.  
Each robot in the team, with no inter-robot 

communication, learns when to switch, and what role to 
switch to, given the perceptual state of the world.    

There are several goals to this research.  First, we 
hope to demonstrate that the complexity problems usually 
associated with Q-learning [17] in complex scenarios can 
be overcome by using role-switching. Furthermore, 
despite the apparent oversimplification of the action space 
that this entails, robot teams using the Q-learning 
algorithm are shown to demonstrate an advantage over 
hand-crafted methods, at least for the scenarios studied.  
The second goal is to explore the dimensions of this 
multi-agent domain. By using independent Q-learning 
functions, it can be evaluated how important the reward 
function is versus the team size versus the environmental 
complexity.   

This research is part of the ongoing DARPA Mobile 
Autonomous Robot Software (MARS) program.  The 
overall project focuses on multi-level learning in hybrid 
deliberative/reactive architectures.  Other related papers 
from our laboratory relevant to this effort include 
[1,8,9,13]. 
 

2. Related Work 
 

Reinforcement Learning [16,17], as used today for 
coordination in behavior-based robotics, has appeared in a 
variety of tasks aimed at taking known competencies and 
building more complex behavior or improved 
performance.  Asada et al [2] demonstrated how 
reinforcement learning could learn primitive behaviors 
starting from sensory information.  Their soccer robot 
started with little capability and used visual input to learn 
how to shoot a soccer ball at a goal.  Instead of starting 
from scratch, work by Mahadevan and Connell [11] 
exploited the success of already developed primitive 
behaviors to learn a task.  Their robot used Q-learning to 
learn how to push boxes around a room without getting 
stuck.  Martinson et al [13], worked with even higher 
levels of abstraction, to coordinate high-level behavioral 
assemblages in their robots to learn finite state automata 
in an intercept scenario. 

By continuing to increase the level of abstraction, 
potentially an entire finite state automata (FSA) could be 
coordinated using a reinforcement learning mechanism.  
Diettrich [5], in his work on Hierarchical Reinforcement 
Learning with MAXQ, alludes to the possibility, as does 
the work by Martinson et al [13].  In this paper, each Q-
learner is coordinating a set of roles as described by an 
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Figure 1.  A team of robots in a cluster on the right are
trying reach the patch of mines at the top of the screen and
return them to the base at the bottom.  An enemy robot
waits for them on the lower left. 

FSA, to learn complex tasks with many requisite 
subtasks. 

Work by Balch [2] in his Ph.D. thesis, combined a 
number of these elements within a system to learn roles.  
His multi-agent homogeneous teams were used to study 
reward functions that resulted in the most diverse 
behaviors, or degree of specialization, among agents.  
These learned specializations are analogous to roles as 
defined in this work.   

The concept of roles, and role switching, however, is 
not limited to the machine learning domain.  In particular, 
robotic soccer has been a popular test bed for role playing 
robots [4,12].  Robots are crafted to play forward, 
defender, goalie etc. as do human soccer teams.  Role 
switching is relatively common, as robots that end up on 
the wrong side of the field might assume a new role to 
maximize their performance at their new location. Work 
by Stone and Veloso [14] in particular, has robots 
assuming new roles in the team depending upon the 
global strategy selected.  It requires significant 
communication among the robots to periodically 
determine which strategy is selected, and which roles 
need to be assumed. 

 
3. Overview of Q-learning 

 
Probably the most widely used reinforcement 

learning method for robotic systems is Q-Learning [16]. 
This is largely due to its algorithmic simplicity and the 
ease of transitioning from a state value function to an 
optimal control policy by choosing in every state the 
action with the highest value. Following Kaelbling's 
approach [7], at every time step the robot perceives the 
perceptual state s. Based on this information the robot 
chooses an action a and executes it.  The utility of this 
action is communicated to the robot through a scalar 
reinforcement value r. The goal of the robot is to choose 
actions that, in the long run, maximize the sum of the 
reinforcement value. 

Let S be the set of distinct internal states that the 
robot can be in and let A be the set of actions that the 
robot can take.  Let T(s,a,s') be the probability of 
transitioning from state s to state s' using action a. If we 
are given a world model defined by the transition 
probabilities and the reward function R(s,a) we can 
compute an optimal deterministic stationary policy using 
techniques from dynamic programming (e.g. Value 
Iteration or Policy Iteration[7]). 

It is usually the case, however, that a world model is 
not known in advance and the robot needs to learn this 
model and simultaneously construct an optimal policy.  
Q-learning is an algorithm that does just that. Let Q(s,a) 
be the expected value of the discounted reinforcement of 
taking action a in state s. The value of this quantity can be 
estimated recursively with the following formula: 
 

The optimal policy in this case is: 

      In other words, the best policy is, in each state, to take 
the action with the largest Q-value. Thus the Q-function 
makes the actions explicit, which allows us to compute 
them on-line using the following Q-learning update rule: 
 

 
 where α is the learning rate, and γ is the discount factor    
(0 ≤ γ < 1 ).  It can be proven [17] that this formula 
converges if each action is executed in each state an 
infinite number of times and α is decayed appropriately. 
For a more detailed discussion of Q-learning, the reader is 
referred to [7,17]. 
 

4. Mission Scenario  
 

The scenario chosen is a foraging task in a hostile 
environment.  Anti-Tank mines are scattered about the 
simulation.  A team of robots is expected to collect all of 
the mines and drop them in a designated storage area.  It 
is assumed that the robots know how to safely handle the 
explosive ordinance.    

However, in addition to the forage task, the robot 
team is faced with a variety of hazards from the 
environment. First off, the robots are not perfectly able to 
navigate within the environment.  Unknown terrain can 
leave robots stuck in shallow locations, or mud pits, 
preventing them from moving.  This is modeled in the 
simulation as a random occurrence for each robot, where 
the maximum allowable time between environmental 
hazards is specified at startup for each map. 
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The second type of hazard is a mobile enemy hiding 
in the surrounding environment.  If the mobile enemy is 
not successfully intercepted by one of the team robots, 
then it will find the nearest robot and "kill" that robot.  
The "killed" robot becomes stuck in a fixed location until 
assisted by another robot.  When an enemy has "killed" a 
robot, it retreats to a random location around the edge of 
the map and waits to attack again. When the robot is 
either in close proximity (0.1m) to an enemy, or is subject 
to a random hazard, then it signals the environment that it 
has died, changes color, and transitions to a STOP action. 

All of the programming, and experimental testing 
described in this paper was performed in the Missionlab 
mission specification [10] environment. 

 
4.1 Q-learning Function 

 
The Q-learning function in Missionlab is used on 

each member of the robot team as a decision-making 
function for picking the appropriate role (action), based 
on the perceptual state of the world and the action 
currently being executed by the Q-learning function.  The 
actions available to each robot are three distinct Finite 
State Automata that each encapsulate one role: Forager, 
Soldier, or Mechanic.    The perceptual state of the world 
is represented by a set of four boolean perceptual triggers: 
Detect_Enemy, Is_Invasion, Detect_Dead, and Is_DieOff.   
Since a combined state-action pair determines the internal 
state of the Q-learner, there are 48 possible internal states 
for the Q-learner.  21 of these 48 internal states are not 
feasible, because two of the triggers are conditionally 
dependent on other triggers.   

To make decisions, and to learn how successful the 
robot has been, it is rewarded when either of two events 
happen.  If the robot successfully drops a mine off at the 
base, then it is rewarded.  If the robot successfully aids a 
dead robot while in the Mechanic role, then it is also 
rewarded.  For most of the experiments, the values of 20 
and 10 respectively were used.  These reward values were 
selected for testing after experimenting with different 
ratios of reward functions. 
 

4.2. Perceptual Triggers 
 

The perceptual triggers used by the Q-learning 
function all make decisions based on input from a visual 
sensor.  Detect_Enemy and Detect_Dead are represented 
by the DETECT_OBJECT primitive in Missionlab.  In 
simulation, red objects represent Enemies, while yellow 
objects represent dead or stuck robots.  If one of these 
objects is within 30.0 m of the robot, then the trigger 
value is TRUE.  In the real robot experiments, any object 
recognized as a dead robot or an enemy, falls well within 
the 30.0m limit imposed in the simulation. 

The remaining two triggers, Is_Invasion, and 
Is_DieOff, also use different visual inputs.  Is_Invasion 
takes red enemy objects as stimuli, while Is_DieOff reacts 
to yellow (dead) robots.  The purpose of this routine is to 
trigger TRUE when either an object is very close to the 
robot, or when there are several such objects within range 

of detection.  The impact of an object on the state of the 
trigger falls off with 1/r2.  The following code describes 
the behavior of these triggers: 

The safety_margin indicates the range at which any 
input causes the trigger to become true.  For example, if 
one enemy is detected at a radius less than the safety 
margin, then the Is_Invasion trigger is guaranteed to be 
TRUE. 

These four triggers are not independent of each other.  
If Is_Invasion is true, indicating a close enemy or lots of 
enemies, then Detect_Enemy has to be true as well 
because at least one enemy has been detected.  However, 
if an enemy is detected at the edge of the sensor range, 
then Detect_Enemy is true, but Is_Invasion is not.   The 
reason for this decision was to differentiate between 
distant and immediate concerns.  
 

4.3 Behavioral Actions 
 

The robots can successfully complete each mission, 
by utilizing a set of Finite State Automata as actions.  
Each FSA corresponds to a role: SOLDIER, 
MECHANIC, or FORAGER. Each role contains a 
fraction of the behaviors necessary for completing the 
scenario successfully.  A robot team can complete 
foraging, and overcome all of the hazards only by either 
switching between roles, or by utilizing a heterogeneous 
team.   

All of the movement behaviors described in the 
following section include an AVIOD_OBSTACLE 
primitive in the weighted summation. 

 
4.3.1 SOLDIER Role 

The SOLDIER (Figure 2) allows a robot to defend 
itself in the presence of enemies.  When no enemies are 
detected, a robot using the SOLDIER role executes a herd 
following behavior, HERDING.  HERDING is a 
weighted summation of AVOID_OBSTACLES, 
WANDER, and MOVE_TO behaviors, where the goal is 
the center of the group of robots.  If an enemy is detected, 
then a robot in the SOLDIER role transitions to an 
INTERCEPT behavior, where the robot moves to the 
nearest distance intercept point with the enemy.  When an 
enemy is successfully intercepted, it is removed by the 
environment and relocated.  The SOLDIER then 
transitions back to a HERDING behavior.  It needs to be 
noted that a robot in the SOLDIER role is still vulnerable 
to the random terrain hazards. 
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4.3.2 MECHANIC Role 
The MECHANIC role (Figure 3) allows robots to 

assist stuck robots (as indicated by changed color), 
including those killed by an enemy and affected by an 
environmental hazard.  As with the SOLDIER role, when 
no stuck robots are detected, the MECHANIC executes 
the HERDING behavior.  When a robot in the 
MECHANIC role detects a stuck robot, it executes a 
MOVE_TO_OBJECT behavior with the dead robot as the 
desired object.  When the MECHANIC robot is near the 
stuck robot, it "fixes" the disabled robot.  In simulation, 
this is done through message passing.  On this real robot 
this is done by bumping, or pushing the stuck robot.    
 
4.3.3 FORAGER Role 

A robot that has assumed the FORAGER role (Figure 
[4]) will search for and collect Anti-Tank mines.  This is 
the task with the most number of intermediate states.  
Robots in the FORAGER role are involved with three 
different types of visual objects.  The first, mines, are 

located typically in patches around the environment.  The 
motivation for patches was the belief that over very large 
areas, if you find one mine then there is likely to be others 
not to far away.  The second type of visual object, the 
base, is statically located and serves as a collection point 
for the mines.  The third, markers, are placed by a 
FORAGER robot near a found mine to indicate the 
presence of a possible patch to all robots. 

A FORAGER which is not currently holding a mine, 
and which cannot detect any markers, starts off in the 
FIND_OBJECT behavior.  FIND_OBJECT is a sub-FSA 
for finding, and placing markers next to the desired 
object.  Within the sub-FSA FIND_OBJECT, if there are 
no mines visible, then a robot executes an EXPLORE 
behavior.  EXPLORE is a weighted summation of 
AVOID_PAST, AVOID_OBSTACLES, and WANDER.  
When the robot detects a mine, it places a visual marker 
in the environment that can be detected by all robots, and 
leaves the FIND_OBJECT behavior. 

When the FORAGER can detect a marker, it executes 
a MOVE_TO_OBJECT behavior with the marker as the 
desired object.  When the robot is NEAR the marker (less 
than 0.1 m), then it leaves the MOVE_TO_OBJECT 
behavior.  If there are no mines visible, then the robot 
removes the visual marker, and returns to the 
FIND_OBJECT behavior.  If there is a mine, then the 
robot transitions to a COLLECT_OBJECT behavior. 

The COLLECT_OBJECT behavior is a sub-FSA for 
picking up mines and returning them to the base.  The 
sub-FSA includes in the following succession: 
MOVE_TO_OBJECT (object = mine), 
PICKUP_OBJECT, and MOVE_TO_GOAL, with the 
goal being the last known location of the base.  Every 
time the base is detected visually, its location in memory 
is updated..  At the base, the robot drops off the mine 

 

  

 

Figure 4.  Forager Role.  A robot explores the environment 
using Avoid_Past until it finds a mine.  Then it drops a 
marker, collects the mine, and returns to the base.  After 
dropping off the mine, it moves to the nearest marker and 
begins looking for mines again.  If no mines are present, it 
removes the marker, and returns to exploring. 

 

Figure 3.  Mechanic Role.  The robot stays close to the 
group center, but moves to dead robots when one 
becomes visible and fixes it. 

Figure 2.  Soldier Role.  The robot stays close to the 
group center, but moves to the nearest distance 
intercept when it detects an interceptable enemy
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(DROP_IN_BASKET) and leaves the 
COLLECT_OBJECT behavior.  If no marker is detected, 
then the robot transitions to FIND_OBJECT, otherwise it 
moves to the marker. 

 
5. Simulation Results 

 
To test the robots, the Q-learning function is located 

within another FSA for each individual robot.  When the 
robot is initially started, it signals the MissionLab console 
that it is active and loads the parameters for random 
hazards.  When the robot is either touched by an enemy, 
or is subject to a random hazard, then it signals the 
environment that it has died, changes color, and 
transitions to a STOP action.  At this point, the Q-learning 
function is no longer executing.  When the robot is aided 
by another robot touching it, then it changes color to blue, 
signals that it is again active, and loads the Q-learning 
function again from the beginning.  The Q-learner does 
not have to select the last role it was executing before it 
died.   

5.1 Performance Metric 
The success of a robot team is judged by the number 

of iterations the simulation steps through, before all of the 
mines are removed from a map.  The faster a team 
collects all of the mines, the better the team is judged to 
have performed.   

Sometimes, however, every robot on the team has 
died before removing the last mine on a map.  In this 
case, the simulation is allowed to run up to 1,000,000 
iterations before stopping the test.  Since most runs 
complete before 300,000 iterations have passed, it is 
highly unlikely that a team will take up to 1,000,000 
iterations to complete a map.  Therefore in the case of 
failure, the simulation is judged to have taken the full 
1,000,000 steps.   

5.2 Hand Coded vs. Q-learn 
Teams of 6 Q-learning robots were tested against two 

types of handcrafted teams.  The first type of team used 
fixed role assignments.  Robots were selected to play a 
particular role for the duration of the scenario. Two 
different teams were tested.  The first team was composed 
of 3 Foragers, 1 Soldier, and 2 Mechanics.  The second 

team tested used 2 of each role.  This second team was 
found to successfully complete more scenarios than the 
first.   

The second type of handcrafted team was a 
homogenous team, with handcrafted rules for role-
switching.  In this case, the default role was FORAGER.  
However, a robot would switch to SOLDIER in the 
presence of an enemy, and would switch to MECHANIC 
whenever a dead robot was detected.   

 
 

Map  # of Mines Marked? # of Patches 
1 21 Y* 4 
2 146 N 4 
3 11 N 1 
4 21 Y 1 
5 51 Y 3 

6** 16 N 1 
7 35 N 35 

(*) - One patch is marked, while others have to be 
found 
(**) - Environment is an obstacle field  
 

Table [1] shows the information for each of the maps 
used in this testing.  The maps varied in the number of 
mines present, whether the location of those mines was 
initially marked, and how many patches existed on the 
screen.  The mines were not guaranteed to be evenly 
distributed among the patches.   

On all but one of these maps, the heterogeneous 
teams required more iterations to complete the scenario 
than the other teams.   Map 4 was an exception, for the 
heterogeneous team with 3 foragers.  In that map, the 
mines are all marked, and not far from the base so it was 
able to clear the mines quickly and efficiently. 

The homogeneous team, however, demonstrated 
exceptional performance on all of the maps.  It required 
fewer iterations on average to complete the scenarios than 
either the Q-learning team, or the Heterogeneous teams.   

The success of the Homogeneous team does not 
indicate failure for the Q-learning team.  The values of the 

Table 1.  Map Information 

  

-

Figure 5. Comparison of Hand Crafted T eams vs. Q
Teams. 

  

 
Figure 6.  By choosing the optimal values of the Q-learning 
team for each map, the performance of the Q-learning 
team can be an order of magnitude greater than that of the 
homogeneous team. 
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learning rate, exploration rate, and exploration decay were  
held static for the Q-learning team in Figure [5], but Q-
learning depends on selecting the best values for the task.  
Just using the arbitrarily chosen values, the Q-learning 
team completed the task in fewer iterations than the 
Heterogenous teams, and except on map 1, in less than 10 
times the number of iterations required by the 
Homogeneous team.  This includes the maps on which the 
Q-learning algorithm was trained.   

 
Map Learning 

Rate 
Exploration 
Rate 

Exploration 
Decay 

1 .3 .1 .98 
2 .1 .3 .99 
3 .3 .2 .1 
4 .1 .3 .98 
5 .1 .2 .9995 
6 .1 .5 .9995 
7 .1 .3 .99 

Table 2.  Q-learning parameters which achieved the best 
performance on each of the maps. 

A second batch of tests were performed to tune the 
values for each of the environments. The results are 
displayed in Figure [6].  They show that given the optimal 
values, the Q-learning team can ultimately match or beat 
the performance of the Homogeneous team.   Table [2] 
contains the values which achieved the best performance 
for each map. 

 
5.3 Reward vs. Team Size 

 
The second battery of tests focused on exploring reward 
function and team size in a variety of environments.  5 
different reward function variations were tested with 6 
team sizes on 7 different maps.   
 
5.3.1 Number of Robots 

 
The first study probed for the ideal number of robots 

in colony undertaking this task.  The intuitive reaction is 
the more the better.  However, at some point adding more 
robots is not going to improve the performance of the 
entire colony. Mataric’s analysis of interference has 
previously explored this phenomenon [6].  This is 
demonstrated by the graph in Figure [7].  The dashed line 
displays the averages observed during the testing.   The 
error bars indicate the minimum and maximum values 
observed for each team size.  The solid line is a simple 
exponent of the form: 

Where: 

The purpose of this curve is just to demonstrate the 
exponential properties of the performance vs. team size 
relation in this scenario for these numbers of robots.   At 
some point, the performance of the team does not increase 
by adding more robots.  

 
5.3.2 Exploring the Reward Space 

The second interesting phenomenon demonstrated by 
the graph in Figure [7], is the unimportance of the 
rewards applied relative to the size of the team.  

Each team was tested with 5 different reward 
functions.  The different reward functions were designed 
to compare the importance of being rewarded for fixing 
robots, vs. being rewarded for collecting mines.   It was 
expected that the performance of the team was strongly 
dependent on the selection of an appropriate reward 
function.  Such a result would be consistent with other 

work in the area of heterogeneous reward functions[14].  
Table [3] has the actual reward ratios used for each 
function.  
 

Fixed Robot Collected Mine 
50 10 
20 10 
20 20 
10 20 
10 50 

Table 3.  Reward values used in each reward function. 

The reward function variation is displayed as error 
bars in Figure[7].  The minimum and maximum values 
seen by each size team, are indicated by the endpoints of 
the error bars.  The size of the team causes an exponential 
drop-off in the number of iterations required to complete 
the map, while the change in the reward function only 
makes local changes about this curve.   

For teams up to 12 robots, the importance of 
selecting the right relationship between the dual rewards 
is not as important as selecting a larger team.  This may 
change with larger team sizes as the robots begin to 
interfere with each other. 
 

1.1,16.,10091,6.99 =−=== ZMKC

MXZKCxf **)( =

Figure 7.  Average Performance of Q-learning team as
team size is changed.  Dashed line indicates actual
measurements, with the error bars indicating variations
due to different reward functions within each group.
The solid line indicates the values predicted by an
exponential decay. 
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6. Robotic Results 
 

The robots used in this work are a pair of 2 Pioneer2-
DXE robots made by ActivMedia.  Each robot is 
equipped with an onboard computer and forward and rear 
sonar for obstacle avoidance.  The vision system consists  
of a Sony XC999 camera with a wide angle lens, 
connected to a NewtonLabs Cognachrome system for 
color blob detection.  Finally, an electromagnet was 
attached in the front for picking up metal objects for the 
foraging task.    

For visual object detection, each of the relevant 
objects (enemies, home base, dead robots, and mines) was 
identified using a unique 3-color bar code mounted on a 
vertical pole.  Markers, as used in the simulation, were 
not used in the real experiments because the robot could 
see a “mine” from anywhere inside the 12’x16’ testing 
area.  Using the cognachrome vision system, a robot 
could determine the bearing to an object and estimate its 
distance for use with the perceptual triggers.   

For the FORAGER role, robots retrieved metal 
objects from a platform around the “mine” pole (see 
Figure [8]).  These were then dropped off at a base 
identified by another pole.  Enemies were portrayed by an 
AmigoBot robot, also made by ActivMedia, remotely 
controlled by a human operator.  When a SOLDIER 
detects the enemy, it moves to intercept it.  The human 
operator does not let the two robots actually touch, but 
removes the enemy after an intercept.  Finally, a robot in 
the MECHANIC role moves to and bumps robots 
displaying the “dead robot” pole.  A human operator is in 
charge of placing and removing the “dead robot” pole. 
The goal behind the experimentation with real robots was 
to verify that the results learned from the simulation 
environment could be transferred directly to a team of real 
robots.   

The simulation results from a two robot training 
session were selected for running on the real robot team.  
The learned policy was as follows for the first robot: 

 
 
 

Role % Chosen Only Common States 
Forager 18.5 25.0 
Mechanic 37.0 41.7 
Soldier 44.5 33.3 

 
And for the second robot: 
 
Role % Chosen Only Common States 
Forager 51.9 66.7 
Mechanic 22.2 8.3 
Soldier 25.9 25.0 

 
The first column, % Chosen, indicates the number of 

states in which the robot would select that role over all 
feasible states.  The second column, Only Common 
States, is the percentage of feasible states where 
isInvasion, and isDieOff, are false where that role is 
selected. The reasoning for the second column is that the 
isInvasion and isDieOff triggers occur infrequently as 
they require a close proximity to the interesting object.  In 
general, the first robot stays in the SOLDIER and 
MECHANIC roles, while the second robot stays in the 
FORAGER role. 

When placed onto the real robots, the simulation code 
worked as predicted.  The second robot stuck to the 
forager role, collecting and returning objects to the base, 
while the first robot stayed in the soldier role and watched 
for enemies.  When an enemy became visible, the 
foraging robot became a MECHANIC and began 
searching for dead robots, while the SOLDIER robot 
intercepted the enemy.   Figure [8] shows a demonstration 
of this particular sequence of actions of the robot team. 

The next step would be to learn a policy on the real 
robots themselves.  Nonetheless, this simple example 
confirmed the simulation results indicating that more 
robots need to be deployed to ensure a successful mission.  
With the vision system, enemies can remain outside a 
robot’s field of view for a long time, and can “kill” 
foraging robots.  By adding more robots, there will be 
more cameras watching a larger area of the field for 
potential dangers and dead robots. 

 
 

S o ld ie r  
R o b o t  E n e m y  

F o r a g e r  
R o b o t  

   
Figure 8.  (left) A small enemy robot approaches the two robot team.  (middle) The robot on the right is a
soldier and begins to intercept, while the second robot changes to MECHANIC and wanders away. (right) The
soldier continues to chase the enemy, while the second robot resumes foraging. 
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7. Conclusion 

 
First and foremost, we have demonstrated the 

extension of our previous Q-learning work [13] to a 
significantly more complicated action space.  In the first 
paper, it was put forward that Q-learning could be used at 
any level of the control hierarchy.  It could be used to 
control low-level primitives as demonstrated in work by 
Asada [2].  It could be used to control behavioral 
assemblages as demonstrated in the intercept scenario.  
This form of Q-learning can also be used, as postulated by 
Diettrich [5], to control complex actions such as Finite 
State Automata or Roles.   

The second aspect that was demonstrated by this 
work is the success of multiple distinct Q-learning 
algorithms in a multi-robot scenario.  The robot team is 
not using a global reward algorithm, and it is using no 
direct communication between the robots.  However, the 
team is still converging to a useful global output.  Even 
just by using the best guess values for the Q-learn 
function, the results are far better than the performance of 
a heterogeneous team of robots.  If the values are selected 
specifically for each map, then the performance of the 
team can even outperform the homogeneous hand coded 
solution. 

Finally, this work demonstrated some interesting 
aspects about a complex reward function.  As suspected, 
the ideal reward function should be selected on a task-by-
task basis with terrain and team information included.  
However, the results indicate that the reward ratio is not 
as critical to the success of the team as initially believed.  
Provided that both functions are being rewarded, a best 
guess for the reward ratio is good enough to clear the 
mines.  More important to the selection process is getting 
enough robots onto the field to survive the hazards 
inherent to the environment. 
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