1,229 research outputs found

    Searching dark-matter halos in the GaBoDS survey

    Get PDF
    We apply the linear filter for the weak-lensing signal of dark-matter halos developed in Maturi et al. (2005) to the cosmic-shear data extracted from the Garching-Bonn-Deep-Survey (GaBoDS). We wish to search for dark-matter halos through weak-lensing signatures which are significantly above the random and systematic noise level caused by intervening large-scale structures. We employ a linear matched filter which maximises the signal-to-noise ratio by minimising the number of spurious detections caused by the superposition of large-scale structures (LSS). This is achieved by suppressing those spatial frequencies dominated by the LSS contamination. We confirm the improved stability and reliability of the detections achieved with our new filter compared to the commonly-used aperture mass (Schneider, 1996; Schneider et al., 1998) and to the aperture mass based on the shear profile expected for NFW haloes (see e.g. Schirmer et al., 2004; Hennawi & Spergel, 2005). Schirmer et al.~(2006) achieved results comparable to our filter, but probably only because of the low average redshift of the background sources in GaBoDS, which keeps the LSS contamination low. For deeper data, the difference will be more important, as shown by Maturi et al. (2005). We detect fourteen halos on about eighteen square degrees selected from the survey. Five are known clusters, two are associated with over-densities of galaxies visible in the GaBoDS image, and seven have no known optical or X-ray counterparts.Comment: 8 pages, 4 figures, accepted by A&

    Searching for galaxy clusters using the aperture mass statistics in 50 VLT fields

    Full text link
    Application of the aperture mass (Map-) statistics provides a weak lensing method for the detection of cluster-sized dark matter halos. We present a new aperture filter function and maximise the effectiveness of the Map-statistics to detect cluster-sized halos using analytical models. We then use weak lensing mock catalogues generated from ray-tracing through N-body simulations, to analyse the effect of image treatment on the expected number density of halos. Using the Map-statistics, the aperture radius is typically several arcminutes, hence the aperture often lies partly outside a data field, consequently the signal-to-noise ratio of a halo detection decreases. We study these border effects analytically and by using mock catalogues. We find that the expected number density of halos decreases by a factor of two if the size of a field is comparable to the diameter of the aperture used. We finally report on the results of a weak lensing cluster search applying the Map-statistics to 50 randomly selected fields which were observed with FORS1 at the VLT. Altogether the 50 VLT fields cover an area of 0.64 square degrees. The I-band images were taken under excellent seeing conditions (average seeing 0.6 arcsec.) which results in a high number density of galaxies used for the weak lensing analysis (26/sq.arcmin). In five of the VLT fields, we detect a significant Map-signal which coincides with an overdensity of the light distribution. These detections are thus excellent candidates for shear-selected clusters.Comment: 23 pages, 5 tables, 24 figures, published in A&A, Sect. 3.5 and 7 are changed or altered; Fig. 11 is change

    The Garching-Bonn Deep Survey (GaBoDS) Wide-Field-Imaging Reduction Pipeline

    Full text link
    We introduce our publicly available Wide-Field-Imaging reduction pipeline THELI. The procedures applied for the efficient pre-reduction and astrometric calibration are presented. A special emphasis is put on the methods applied to the photometric calibration. As a test case the reduction of optical data from the ESO Deep Public Survey including the WFI-GOODS data is described. The end-products of this project are now available via the ESO archive Advanced Data Products section.Comment: 6 pages, 3 figures, proceedings of ESO Calibration Workshop 200

    Beyond the pale?: the implications of the RSLG Report for non-CURL modern university libraries: Perspectives on the support libraries group: Final report

    Get PDF
    We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-114

    An optimal filter for the detection of galaxy clusters through weak lensing

    Full text link
    We construct a linear filter optimised for detecting dark-matter halos in weak-lensing data. The filter assumes a mean radial profile of the halo shear pattern and modifies that shape by the noise power spectrum. Aiming at separating dark-matter halos from spurious peaks caused by large-scale structure lensing, we model the noise as being composed of weak lensing by large-scale structures and Poisson noise from random galaxy positions and intrinsic ellipticities. Optimal filtering against the noise requires the optimal filter scale to be smaller than typical halo sizes. Although a perfect separation of halos from spurious large-scale structure peaks is strictly impossible, we use numerical simulations to demonstrate that our filter produces substantially more sensitive, reliable and stable results than the conventionally used aperture-mass statistic.Comment: 9 pages, 6 figures, A&A submitte

    GaBoDS: The Garching-Bonn Deep Survey -- II. Confirmation of EIS cluster candidates by weak gravitational lensing

    Full text link
    We report the first confirmation of colour-selected galaxy cluster candidates by means of weak gravitational lensing. Significant lensing signals were identified in the course of the shear-selection programme of dark matter haloes in the Garching-Bonn Deep Survey, which currently covers 20 square degrees of deep, high-quality imaging data on the southern sky. The detection was made in a field that was previously covered by the ESO Imaging Survey (EIS) in 1997. A highly significant shear-selected mass-concentration perfectly coincides with the richest EIS cluster candidate at z~0.2, thus confirming its cluster nature. Several other shear patterns in the field can also be identified with cluster candidates, one of which could possibly be part of a filament at z~0.45.Comment: 4 pages, 4 figures, submitted to A&A Letter

    GaBoDS: The Garching-Bonn Deep Survey -- I. Anatomy of galaxy clusters in the background of NGC 300

    Full text link
    The Garching-Bonn Deep Survey (GaBoDS) is a virtual 12 square degree cosmic shear and cluster lensing survey, conducted with the [email protected] MPG/ESO telescope at La Silla. It consists of shallow, medium and deep random fields taken in R-band in subarcsecond seeing conditions at high galactic latitude. A substantial amount of the data was taken from the ESO archive, by means of a dedicated ASTROVIRTEL program. In the present work we describe the main characteristics and scientific goals of GaBoDS. Our strategy for mining the ESO data archive is introduced, and we comment on the Wide Field Imager data reduction as well. In the second half of the paper we report on clusters of galaxies found in the background of NGC 300, a random archival field. We use weak gravitational lensing and the red cluster sequence method for the selection of these objects. Two of the clusters found were previously known and already confirmed by spectroscopy. Based on the available data we show that there is significant evidence for substructure in one of the clusters, and an increasing fraction of blue galaxies towards larger cluster radii. Two other mass peaks detected by our weak lensing technique coincide with red clumps of galaxies. We estimate their redshifts and masses.Comment: 20 pages, 16 figures, gzipped. An online postscript version with higher quality figures (3.3 MBytes) can be downloaded from http://www.mpa-garching.mpg.de/~mischa/ngc300/ngc300.ps.gz . Submitted to A&

    Mass, Light and Colour of the Cosmic Web in the Supercluster SCL2243-0935 (z=0.447)

    Full text link
    Context: In 2.2m MPG-ESO/WFI data we discovered several mass peaks through weak lensing, forming a possible supercluster at redshift 0.45. Through multi-colour wide-field imaging with CFHT/Megaprime and INT/WFC we identify early-type galaxies and trace the supercluster network with them. Through EMMI/NTT multi-object spectroscopy we verify the initial shear-selected cluster candidates. Using weak lensing we obtain mass estimates for the supercluster centre and the filaments. Results: We identified the centre of the SCL2243-0935 supercluster, MACS J2243-0935, which was found independently by Ebeling et al. (2010). 13 more clusters or overdensities are embedded in a filamentary network, half of them are already spectroscopically confirmed. Three (5-15) Mpc filaments are detected, and we estimate the global size of SCL2243 to 45x15x50 Mpc, making it one of the largest superclusters known at intermediate redshifts. Weak lensing yields r_200=(2.06+/-0.13) Mpc and M_200=(1.54+/-0.29)x10^15 M_sun for MACS J2243 with M/L=428+/-82, very similar to results from size-richness cluster scaling relations. Integrating the weak lensing surface mass density over the supercluster network (defined by increased i-band luminosity or g-i colours), we find (1.53+/-1.01)x10^15 M_sun and M/L=305+/-201 for the three main filaments, consistant with theoretical predictions. The filaments' projected surface mass density is 0.007-0.012, corresponding to 10-100 times the critical density. The greatly varying density of the cosmic web is also reflected in the mean colour of galaxies. Conclusions: SCL2243 is significantly larger and much more richly structured than other known superclusters such as A901/902 or MS0302 studied with weak lensing before. It is a text-book supercluster with little contamination along the line of sight, making it a perfect sandbox for testing new techniques probing the cosmic web.Comment: 26 pages, 16 figures, accepted for publication Astronomy and Astrophysics. Minor corrections implemented as requested by the refere

    Mass-detection of a matter concentration projected near the cluster Abell 1942: Dark clump or high-redshift cluster?

    Get PDF
    A weak-lensing analysis of wide-field VV- and II-band images centered on the cluster Abell 1942 has uncovered a mass concentration ∌7\sim 7 arcminutes South of the cluster center. A statistical analysis shows that the detections are highly significant. No strong concentration of bright galaxies is seen at the position of the mass concentration, though a slight galaxy number overdensity and a weak extended X-ray source are present about 1' away from its center. From the spatial dependence of the tangential alignment around the center of the mass concentration, we inferred a lower bound on the mass inside a sphere of radius 0.5h−10.5 h^{-1}\ts Mpc of 1×1014h−1M⊙1\times 10^{14}h^{-1}M_\odot, much higher than crude mass estimates based on X-ray data. No firm conclusion can be inferred about the nature of the clump. If it were a high-redshift cluster, the weak X-ray flux would indicate that it had an untypically low X-ray luminosity for its mass; if the X-ray emission were physically unrelated to the mass concentration, this conclusion would be even stronger. The search for massive halos by weak lensing enables us for the first time to select halos based on their mass properties only and to detect new types of objects, e.g., dark halos. The mass concentration in the field of A1942 may be the first example of such a halo.Comment: Sumitted to A&A Main Journal. 15 pages, 11 figures. 75 Kb gzipped tar file. Figures with images not included, but available on ftp.iap.fr /pub/from_users/mellier/A1942: a1942darkclump.ps.gz (2.1 Mb
    • 

    corecore