331 research outputs found
Universal response pattern of phytoplankton growth rates to increasing CO 2
Phytoplankton growth rate is a key variable controlling species succession and ecosystem structure throughout the surface ocean. Carbonate chemistry conditions are known to influence phytoplankton growth rates but there is no conceptual framework allowing us to compare growth rate responses across taxa. Here we analyse the literature to show that phytoplankton growth rates follow an optimum curve response pattern whenever the tested species is exposed to a sufficiently large gradient in proton (H+) concentrations. Based on previous findings with coccolithophores and diatoms, we argue that this ‘universal reaction norm’ is shaped by the stimulating influence of increasing inorganic carbon substrate (left side of the optimum) and the inhibiting influence of increase H+ (right side of the optimum). We envisage that exploration of carbonate chemistry-dependent optimum curves as a default experimental approach will boost our mechanistic understanding of phytoplankton responses to ocean acidification, like temperature curves have already boosted our mechanistic understanding to global warming
High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters
Plankton biomass, material fluxes, e.g. 14C uptake, and specific growth rates are related quantities. In the course of comparing various methods of measuring these properties in September 1982 off Oahu, Hawaii, we found specific growth rates of 1–2·d−1. Such rates approach the maximum expected values observed in laboratory cultures
Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.
The input of new nitrogen into the euphotic zone constrains the export of organic carbon to
the deep ocean and thereby the biologically mediated long-term CO2 exchange between
the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate
diffusion from the ocean’s interior and biological fixation of atmospheric N2 are the main
sources of new nitrogen for phytoplankton productivity. With measurements across the
tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion
(171±190 mmolm 2 d 1) dominates over N2 fixation (9.0±9.4 mmolm 2 d 1) at the time
of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new
nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate
that salt finger diffusion should be considered in present and future ocean nitrogen budgets,
as it could supply globally 0.23–1.00 TmolNyr 1 to the euphotic zone.MALASPINA (CSD2008-00077)Versión del editor10,015
Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 36 (2013): 74-97, doi:10.1007/s12237-012-9560-5.Biogeochemical cycles in estuaries are regulated by a diverse set of physical and
biological variables that operate over a variety of time scales. Using in situ optical sensors, we
conducted a high-frequency time-series study of several biogeochemical parameters at a mooring
in central Long Island Sound from May to August 2010. During this period, we documented
well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind
stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into
various signal components, we estimated the amount of variation that could be ascribed to each
process. Primary production and surface wind stress explained 59% and 19%, respectively, of the
variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and
sunlight on about one-quarter of study days. Daytime nitrate minima and dissolved oxygen
maxima occurred nearly simultaneously on the majority (> 80%) of days during the study period;
both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima
reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the
following night. Changes in nitrate concentrations were used to generate daily estimates of new
primary production (182 ± 37 mg C m-2 d-1) and the f-ratio (0.25), i.e., the ratio of production
based on nitrate to total production. These estimates, the first of their kind in Long Island Sound,
were compared to values of community respiration, primary productivity, and net ecosystem
metabolism, which were derived from in situ measurements of oxygen concentration. Daily
averages of the three metabolic parameters were 1660 ± 431, 2080 ± 419, and 429 ± 203 mg C
m-2 d-1, respectively. While the system remained weakly autotrophic over the duration of the
study period, we observed very large day-to-day differences in the f-ratio and in the various
metabolic parameters.This work was supported by the Yale
Institute for Biospheric Studies, the Sounds Conservancy of the Quebec-Labrador Foundation,
and the Yale School of Forestry and Environmental Studies Carpenter-Sperry Fund.2014-01-0
Pathways between Primary Production and Fisheries Yields of Large Marine Ecosystems
The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems
An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates
The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 μm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean
The processing and impact of dissolved riverine nitrogen in the Arctic Ocean
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP-
0229302 and NSF-OPP-0732985.Support to SET was additionally
provided by an NSERC Postdoctoral Fellowship
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
Spatial extent and historical context of North Sea oxygen depletion in August 2010
Prompted by recent observations of seasonal low dissolved oxygen from two moorings in the North Sea, a hydrographic survey in August 2010 mapped the spatial extent of summer oxygen depletion. Typical near-bed dissolved oxygen saturations in the stratified regions of the North Sea were 75–80 % while the well-mixed regions of the southern North Sea reached 90 %. Two regions of strong thermal stratification, the area between the Dooley and Central North Sea Currents and the area known as the Oyster Grounds, had oxygen saturations as low as 65 and 70 % (200 and 180 µmol dm-3) respectively. Low dissolved oxygen was apparent in regions characterised by low advection, high stratification, elevated organic matter production from the spring bloom and a deep chlorophyll maximum. Historical data over the last century from the International Council for the Exploration of the Sea oceanographic database highlight an increase in seasonal oxygen depletion and a warming over the past 20 years. The 2010 survey is consistent with, and reinforces, the signal of recent depleted oxygen at key locations seen in the (albeit sparse) historical data
- …