24 research outputs found

    Lack of Sik1 in Mouse Embryonic Stem Cells Impairs Cardiomyogenesis by Down-Regulating the Cyclin-Dependent Kinase Inhibitor p57kip2

    Get PDF
    Sik1 (salt inducible kinase 1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMP-activated protein kinase family. During murine embryogenesis, sik1 marks the monolayer of future myocardial cells that will populate first the primitive ventricle, and later the primitive atrium suggesting its involvement in cardiac cell differentiation and/or heart development. Despite that observation, the involvement of sik1 in cardiac differentiation is still unknown. We examined the sik1 function during cardiomyocyte differentiation using the ES-derived embryoid bodies. We produced a null embryonic stem cell using a gene-trap cell line carrying an insertion in the sik1 locus. In absence of the sik1 protein, the temporal appearance of cardiomyocytes is delayed. Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent kinase inhibitor p57Kip2 is directly involved. Collectively, we provided evidence that sik1-mediated effects are specific for cardiomyogenesis regulating cardiomyoblast cell cycle exit toward terminal differentiation

    Cripto promotes A–P axis specification independently of its stimulatory effect on Nodal autoinduction

    Get PDF
    The EGF-CFC gene cripto governs anterior–posterior (A–P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII–activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal–ALK4–Smad2 signaling both in embryonic stem cells and cell-based assays. In criptoF78A/F78A mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, criptoF78A/F78A embryos establish an A–P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal–Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A–P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal–ALK4–Smad2 signaling pathway

    SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonic-Assisted Diatomite Nanoparticles

    Get PDF
    AbstractThe small molecule Galunisertib (LY2157299, LY) shows multiple anticancer activities blocking the transforming growth factor‐β1 receptor, responsible for the epithelial‐to‐mesenchymal transition (EMT) by which colorectal cancer (CRC) cells acquire migratory and metastatic capacities. However, frequent dosing of LY can produce highly toxic metabolites. Alternative strategies to reduce drug side effects can rely on nanoscale drug delivery systems that have led to a medical revolution in the treatment of cancer, improving drug efficacy and lowering drug toxicity. Here, a hybrid nanosystem (DNP‐AuNPs‐LY@Gel) made of a porous diatomite nanoparticle decorated with plasmonic gold nanoparticles, in which LY is retained by a gelatin shell, is proposed. The multifunctional capability of the nanosystem is demonstrated by investigating the efficient LY delivery, the enhanced EMT reversion in CRCs and the intracellular quantification of drug release with a sub‐femtogram resolution by surface‐enhanced Raman spectroscopy (SERS). The LY release trigger is the pH sensitivity of the gelatin shell to the CRC acidic microenvironment. The drug release is real‐time monitored at single‐cell level by analyzing the SERS signals of LY in CRC cells. The higher efficiency of LY delivered by the DNP‐AuNPs‐LY@Gel complex paves the way to an alternative strategy for lowering drug dosing and consequent side effects

    The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

    Get PDF
    Objective Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. Design Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. Results We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-beta 1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. Conclusions Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.CH: ERC Advanced Investigator Grant (Pa-CSC 233460), European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 256974 (EPC-TM-NET) and No 602783 (CAM-PaC), the Subdireccion General de Evaluacion y Fomento de la Investigacion, Fondo de Investigacion Sanitaria (PS09/02129 \& PI12/02643), and the Programa Nacional de Internacionalizacion de la I+D, Subprogramma: FCCI 2009 (PLE2009-0105; Ministerio de Economia y Competitividad, Spain). MC: La Caixa Predoctoral Fellowship.S

    LAMC2 marks a tumor-initiating cell population with an aggressive signature in pancreatic cancer

    Get PDF
    [Background]: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood.[Methods]: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-β) signaling.[Results]: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-β signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-β type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells.[Conclusions]: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.This work was supported by: Marie Curie IF (H2020-MSCA-IF-2015, #703753), My First AIRC Grant (MFAG-2017, #20206), POR Campania FESR 2014/2020 (Project SATIN) to E.L.; AIRC IG grant 2018 n.21420 to A.D.L.; FIMP to D.D.C.; AECC (Proye18046BATL_002) to E.B.; My First AIRC Grant (MFAG grant #23029), WorldWide Cancer Research (Research grant #20–0188), EASI Genomics consortium (TNA project #15158) and the World Cancer Research Fund (Seed grant #2021–1769) to A.C

    Determinants of metastatic competency in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancer types and represents a major therapeutic challenge. Although initial events in colorectal carcinogenesis are relatively well characterized and treatment for early-stage disease has significantly improved over the last decades, the mechanisms underlying metastasis - the main cause of death - remain poorly understood. Correspondingly, no effective therapy is currently available for advanced or metastatic disease. There is increasing evidence that colorectal cancer is hierarchically organized and sustained by cancer stem cells, in concert with various stromal cell types. Here, we review the interplay between cancer stem cells and their microenvironment in promoting metastasis and discuss recent insights relating to both patient prognosis and novel targeted treatment strategies. A better understanding of these topics may aid the prevention or reduction of metastatic burdenWork by the authors has been supported by grant SAF2014-53784_R (EB) and Juan de la Cierva fellowships (DVFT and AC) from the Spanish Ministry of Economy and Competitiveness (MINECO), by fellowships from Fundacion Olga Torres (EL) and Asociacion Española contra el Cancer (EL) and by the Dr. Josef Steiner Foundation (EB). Work in the laboratory of EB is supported by Fundacion Botín and Banco Santander, through Santander Universities. IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from the MINECO. We would like to thank members of the laboratory of EB for fruitful discussion

    Determinants of metastatic competency in colorectal cancer

    No full text
    Colorectal cancer (CRC) is one of the most common cancer types and represents a major therapeutic challenge. Although initial events in colorectal carcinogenesis are relatively well characterized and treatment for early‐stage disease has significantly improved over the last decades, the mechanisms underlying metastasis – the main cause of death – remain poorly understood. Correspondingly, no effective therapy is currently available for advanced or metastatic disease. There is increasing evidence that colorectal cancer is hierarchically organized and sustained by cancer stem cells, in concert with various stromal cell types. Here, we review the interplay between cancer stem cells and their microenvironment in promoting metastasis and discuss recent insights relating to both patient prognosis and novel targeted treatment strategies. A better understanding of these topics may aid the prevention or reduction of metastatic burden

    The Revolutionary Roads to Study Cell–Cell Interactions in 3D In Vitro Pancreatic Cancer Models

    No full text
    Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones
    corecore