192 research outputs found

    Temporal changes in the expression and distribution of adhesion molecules during liver development and regeneration

    Get PDF
    We have compared by immunocytochemistry and immunoblotting the expression and distribution of adhesion molecules participating in cell-matrix and cell-cell interactions during embryonic development and regeneration of rat liver. Fibronectin and the fibronectin receptor, integrin alpha 5 beta 1, were distributed pericellularly and expressed at a steady level during development from the 16th day of gestation and in neonate and adult liver. AGp110, a nonintegrin fibronectin receptor was first detected on the 17th day of gestation in a similar, nonpolarized distribution on parenchymal cell surfaces. At that stage of development haemopoiesis is at a peak in rat liver and fibronectin and receptors alpha 5 beta 1 and AGp110 were prominent on the surface of blood cell precursors. During the last 2 d of gestation (20th and 21st day) hepatocytes assembled around lumina. AGp110 was initially depolarized on the surface of these acinar cells but then confined to the lumen and to newly-formed bile canaliculi. At birth, a marked increase occurred in the canalicular expression of AGp110 and in the branching of the canalicular network. Simultaneously, there was enhanced expression of ZO-1, a protein component of tight junctions. On the second day postpartum, presence of AGp110 and of protein constituents of desmosomes and intermediate junctions, DGI and E-cadherin, respectively, was notably enhanced in cellular fractions insoluble in nonionic detergents, presumably signifying linkage of AGp110 with the cytoskeleton and assembly of desmosomal and intermediate junctions. During liver regeneration after partial hepatectomy, AGp110 remained confined to apical surfaces, indicating a preservation of basic polarity in parenchymal cells. A decrease in the extent and continuity of the canalicular network occurred in proliferating parenchyma, starting 24 h after resection in areas close to the terminal afferent blood supply of portal veins and spreading to the rest of the liver within the next 24 h. Distinct acinar structures, similar to the ones in prenatal liver, appeared at 72 h after hepatectomy. Restoration of the normal branching of the biliary tree commenced at 72 h. At 7 d postoperatively acinar formation declined and one-cell-thick hepatic plates, as in normal liver, were observed

    Tunneling-induced angular momentum for single cold atoms

    Get PDF
    We study the generation of angular momentum carrying states for a single cold particle by breaking the symmetry of a spatial adiabatic passage process in a two-dimensional system consisting of three harmonic potential wells. By following a superposition of two eigenstates of the system, a single cold particle is completely transferred to the degenerate first excited states of the final trap, which are resonantly coupled via tunneling to the ground states of the initial and middle traps. Depending on the total time of the process, angular momentum is generated in the final trap, with values that oscillate between ±\pm\hbar. This process is discussed in terms of the asymptotic eigenstates of the individual wells and the results have been checked by simulations of the full two-dimensional Schr\"odinger equation.Comment: 6 pages, 5 figure

    Cholesterol overload: contact sites to the rescue!

    Get PDF
    Delivery of low-density lipoprotein-derived cholesterol to the endoplasmic reticulum (ER) is essential for cholesterol homeostasis, yet the mechanism of this transport has largely remained elusive. Two recent reports shed some light on this process, uncovering a role for Niemann Pick type-C1 protein (NPC1) in the formation of membrane contact sites (MCS) between late endosomes (LE)/lysosomes (Lys) and the ER. Both studies identified a loss of MCS in cells lacking functional NPC1, where cholesterol accumulates in late endocytic organelles. Remarkably, and taking different approaches, both studies have made a striking observation that expansion of LE/Lys-ER MCS can rescue the cholesterol accumulation phenotype in NPC1 mutant or deficient cells. In both cases, the cholesterol was shown to be transported to the ER, demonstrating the importance of ER-LE/Lys contact sites in the direct transport of low-density lipoprotein-derived cholesterol to the ER

    Activation of Endothelial Nitric Oxide (eNOS) Occurs Through Different Membrane Domains in Endothelial Cells.

    Get PDF
    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endo- thelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these sig- nals are transmitted are less well characterized. Here, we manipulated bovine aortic endo- thelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin- 1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmit- ted through distinct membrane domains in endothelial cell

    Una experiencia de evaluación compartida en postgrado

    Get PDF
    Podeu consultar la Vuitena trobada de professorat de Ciències de la Salut completa a: http://hdl.handle.net/2445/66524Una de las líneas de acción del GIDTF consiste en desarrollar una estrategia de evaluación compartida alumnos/profesores de la Capacidad de Aprendizaje y responsabilidad a lo largo de la formación práctica de los estudiantes de Farmacia. Este curso 2014-15 se ha ampliado el alcance de la actuación a módulos del Título de Especialista en Farmacia Industrial y Galénica (TEFIG), una formación de post-grado homologada por el Ministerio de Educación y perteneciente a los estudios de Farmacéutico Interno Residente (FIR) de la especialización sanitaria. El presente trabajo expone la estrategia llevada a cabo en el módulo de Formas Farmacéuticas Semisólidas (FFSS) del TEFIG y los resultados del análisis de la autoevaluación y evaluación entre iguales intra-grupal, a fin de validar el proceso de evaluación así como los instrumentos empleados (rúbricas). De los 15 estudiantes matriculados, distribuidos en cuatro grupos, tres de ellos no completaron sus actividades evaluativas. La tendencia de los alumnos es atribuirse una menor puntuación en su auto-calificación, mientras que cuando califican a sus compañeros otorgan puntuaciones que se aproximan más a las del profesor, que en general es más alta. Sin embargo, las diferencias entre las notas de la coevaluación son ≤ 10%, lo que permite validar los instrumentos de evaluación. Todos ellos opinan que el formato, indicadores y escala de puntuación de la rúbrica son buenos o excelentes y están bastante o muy satisfechos con este método de evaluación compartida. Por lo tanto, se ha podido evaluar conjuntamente las prácticas del módulo Formas Farmacéutica Semisólidas del TEFIG y la competencia transversal asociada Capacidad de aprendizaje y responsabilidad y de forma muy fiable. NOTA: Este trabajo forma parte del Proyecto 2014PID-UB/050 de la Universidad de Barcelona

    Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice

    Get PDF
    BACKGROUND/AIMS: Recent reports suggest that the adipose tissue and adipokines are potent modulators of inflammation. However, there is only scarce knowledge on the functional role and regulation of endogenous adiponectin in non-fat tissues such as the liver under conditions of acute inflammation. METHODS: In the present study, we investigated adiponectin expression in healthy murine liver tissue and under inflammatory conditions in vivo. RESULTS: Adiponectin mRNA was readily detectable in healthy liver tissue and further increased in ConA-mediated acute liver failure. Adiponectin protein expression was mainly found in hepatic endothelial cells. In vitro adiponectin mRNA expression was detectable in several cell types, including primary hepatic sinusoidal endothelial cells, stellate cells, and macrophages. Mice pretreated with adiponectin before ConA administration developed reduced hepatic injury as shown by decreased release of transaminases and reduced hepatocellular apoptotis. Of note, TNF-alpha levels were not affected by adiponectin, whereas IL-10 production was increased. Neutralisation of IL-10 diminished the protective effect of adiponectin. CONCLUSIONS: Adiponectin expression is up-regulated in ConA-mediated acute liver failure. Therefore, adiponectin might play a role in the control and limitation of inflammation in the liver. Moreover, our data suggest a role for IL-10 in adiponectin-mediated hepatoprotection

    The Use of Continuous Peritoneal Dialysis in Europe for the Treatment of Children with End-Stage Renal Failure: Data from the EDTA Registry

    Get PDF
    The demographic data on the use of continuous peritoneal dialysis in Europe for children starting renal replacement therapy under the age of 15 years was obtained from data collected by the Registry of the European Dialysis and Transplant Association—European Renal Association (EDTA Registry) on individual patient questionnaires 1980-1986. Continuous ambulatory peritoneal dialysis (CAPD) and its variants appeared to be increasingly utilised as treatment for children with end-stage renal failure (ESRF) and accounted for approximately 25% of all renal replacement therapy (RRT). Important differences in its use in various European countries are demonstrated. The proportional contribution of CAPD to treatment was higher during the first year of RRT and gradually decreased thereafter. No significant sex differences existed in the use of this treatment. Approximately 70% of all patients on CAPD were older than 6 years of age, but it is in those under 6 years that the highest proportion are put on CAPD as first method of treatment for end-stage renal failure. The most common cause of abandonment of this treatment was peritonitis, which contributed 50% of the drop-out rat

    Two Shared Icosahedral Metallacarboranes through Iron: A Joint Experimental and Theoretical Refinement of Mössbauer Spectrum in [Fe(1,2-C2B9H11)2]Cs

    Get PDF
    SUBJECTS:Anions,Conformation,Energy,Molecular structure,Quantum mechanicsMössbauer and X-ray photoelectron spectroscopies (XPS) are complemented with high-level quantum-chemical computations in the study of the geometric and electronic structure of the paramagnetic salt of the metallacarborane sandwich complex [Fe(1,2-CBH)]Cs = FeSanCs. Experimental Fe isomer shifts and quadrupole splitting parameters are compared with the theoretical prediction, with good agreement. The appearance of two sets of Cs(3d) doublets in the XPS spectrum, separated by 2 eV, indicates that Cs has two different chemical environments due to ease of the Cs cation moving around the sandwich complex with low-energy barriers, as confirmed by quantum-chemical computations. Several minimum-energy geometries of the FeSanCs structure with the corresponding energies and Mössbauer parameters are discussed, in particular the atomic charges and spin population and the surroundings of the Fe atom in the complex. The Mössbauer spectra were taken at different temperatures showing the presence of a low-spin Fe atom with S = 1/2 and thus confirming a paramagnetic Fe species.We are grateful to Prof. Ibon Alkorta (IQM-CSIC) for providing the MEP of trans-FeSan anion conformer. J.F.M. and J.Z.D.-P. acknowledge financial support from grant RTI2018-095303-B-C51 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and from grant S2018-NMT-4321 funded by the Comunidad de Madrid and by “ERDF A way of making Europe”. M.F., J.E., and J.M.O.-E. are grateful to Ministerio de Ciencia, Innovacióny Universidades, for financial support with grant number PID2021-125207NB-C32. O.B.O. and D.R.A. acknowledge the financial support from the Universidad de Buenos Aires (grant no. 20020190100214BA), the Consejo Nacional de Investigaciones Científicas y Técnicas (grant nos PIP11220200100467CO, PIP 11220130100377CO, and PIP11220130100311CO), and the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (grant no. PICT-201-0381).Peer reviewe

    Large emissions from floodplain trees close the Amazon methane budget

    Get PDF
    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources

    Annexin A6 Is Critical to Maintain Glucose Homeostasis and Survival During Liver Regeneration in Mice

    Get PDF
    Background and Aims: Liver regeneration requires the organized and sequential activation of events that lead to restoration of hepatic mass. During this process, other vital liver functions need to be preserved, such as maintenance of blood glucose homeostasis, balancing the degradation of hepatic glycogen stores, and gluconeogenesis (GNG). Under metabolic stress, alanine is the main hepatic gluconeogenic substrate, and its availability is the rate‐limiting step in this pathway. Na+‐coupled neutral amino acid transporters (SNATs) 2 and 4 are believed to facilitate hepatic alanine uptake. In previous studies, we demonstrated that a member of the Ca2+‐dependent phospholipid binding annexins, Annexin A6 (AnxA6), regulates membrane trafficking along endo‐ and exocytic pathways. Yet, although AnxA6 is abundantly expressed in the liver, its function in hepatic physiology remains unknown. In this study, we investigated the potential contribution of AnxA6 in liver regeneration. Approach and Results: Utilizing AnxA6 knockout mice (AnxA6−/−), we challenged liver function after partial hepatectomy (PHx), inducing acute proliferative and metabolic stress. Biochemical and immunofluorescent approaches were used to dissect AnxA6−/− mice liver proliferation and energetic metabolism. Most strikingly, AnxA6−/− mice exhibited low survival after PHx. This was associated with an irreversible and progressive drop of blood glucose levels. Whereas exogenous glucose administration or restoration of hepatic AnxA6 expression rescued AnxA6−/− mice survival after PHx, the sustained hypoglycemia in partially hepatectomized AnxA6−/− mice was the consequence of an impaired alanine‐dependent GNG in AnxA6−/− hepatocytes. Mechanistically, cytoplasmic SNAT4 failed to recycle to the sinusoidal plasma membrane of AnxA6−/− hepatocytes 48 hours after PHx, impairing alanine uptake and, consequently, glucose production. Conclusions: We conclude that the lack of AnxA6 compromises alanine‐dependent GNG and liver regeneration in mice
    corecore