
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dadun, University of Navarra
Up-regulation of the anti-inflammatory adipokine
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Background/Aims: Recent reports suggest that the adipose tissue and adipokines are potent modulators of

inflammation. However, there is only scarce knowledge on the functional role and regulation of endogenous adiponectin

in non-fat tissues such as the liver under conditions of acute inflammation.

Methods: In the present study, we investigated adiponectin expression in healthy murine liver tissue and under

inflammatory conditions in vivo.

Results: Adiponectin mRNA was readily detectable in healthy liver tissue and further increased in ConA-mediated

acute liver failure. Adiponectin protein expression was mainly found in hepatic endothelial cells. In vitro adiponectin

mRNA expression was detectable in several cell types, including primary hepatic sinusoidal endothelial cells, stellate

cells, and macrophages. Mice pretreated with adiponectin before ConA administration developed reduced hepatic

injury as shown by decreased release of transaminases and reduced hepatocellular apoptotis. Of note, TNF-a levels

were not affected by adiponectin, whereas IL-10 production was increased. Neutralisation of IL-10 diminished the

protective effect of adiponectin.

Conclusions: Adiponectin expression is up-regulated in ConA-mediated acute liver failure. Therefore, adiponectin

might play a role in the control and limitation of inflammation in the liver. Moreover, our data suggest a role for IL-10

in adiponectin-mediated hepatoprotection.

q 2005 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Only recently, with the discovery of a variety of

adipocyte-derived cytokines, so called ‘adipokines’, the

adipose tissue has gained a role as an important endocrine

organ. Adiponectin has attracted much interest as it

represents the most abundant adipocyte-derived protein

reaching high plasma levels in both humans and rodents [1].
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Adiponectin has been shown to elicit a broad range of

biological effects such as insulin-sensitising and anti-

atherogenic actions [2].

Recent reports pointed out to a possible role of adipose

tissue and adipokines as potent regulators of inflammatory

processes. We and others recently demonstrated potent anti-

inflammatory properties of adiponectin [3,4]. Apart from

downregulation of the synthesis of the pro-inflammatory

cytokine TNF-a, adiponectin leads to an increased

production of the anti-inflammatory mediators IL-10 and

IL-1RA in human myeloid cells [3]. Adiponectin seems to

be primarily expressed by adipocytes. Thus, regulation of

adiponectin expression has been almost exclusively studied

in adipocytes. However, recent reports showed that in

human myotubes expression of adiponectin can be induced
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upon stimulation with pro-inflammatory stimuli such as

TNF-a or LPS [5,6]. This observation might describe a

negative feedback-loop mediated via adiponectin and fits

into the concept that adiponectin plays an anti-inflammatory

role in inflammation. However, there is only scarce

knowledge on the functional role and regulation of

endogenous adiponectin and its receptors in non-fat tissues

such as the liver under conditions of acute inflammation.

Therefore, the aim of the present work was to (I) examine

whether adiponectin could be detected in normal healthy

liver tissue, (II) to further characterize adiponectin

producing cell types and (III) to find out, if adiponectin

exerts hepatoprotective effects in a model of acute liver

failure.
2. Materials and methods
2.1. Animals

Six to 8-week-old female BALB/c mice were obtained from Harlan
(Borchen, Germany) and were maintained under controlled conditions
(22 8C, 55% humidity, 12-h dark/light rhythm), having free access to
standard chow and water. All animals received humane care according to
the legal requirements in Austria.
2.2. Animal treatments

All reagents were injected in a total volume of 200 ml per mouse for
intravenous injections (i.v.) and 100 ml per mouse for intraperitoneal (i.p.)
injections and were dissolved in pyrogen-free saline. Where indicated
either 6 mg/kg murine Adiponectin (R&D systems) or saline were i.p.
injected 12 h before treatment with 15 mg/kg Con A (Sigma, Vienna,
Austria) i.v. To investigate the role of IL-10 in adiponectin induced
hepatoprotection, either 3 mg of neutralizing IL-10 antibody per mouse
(Immunotools, Friesoythe, Germany) or solvent was administrated 30 min
before adiponectin injection.
2.3. Sampling of material

For determination of circulating cytokine levels, blood samples were
taken from the tail-vein 2 h after challenge. Eight hours after ConA-
treatment, mice were lethally anesthetized with 50 mg/kg Vetanarcol
(Intervet, Austria) i.v., containing a dose of 15 mg/kg heparin. Blood was
withdrawn by cardiac puncture, immediately centrifuged and plasma
samples were stored at K20 8C. The livers were removed and one part was
frozen in liquid nitrogen for mRNA preparation, another part was
embedded in Tissue-TEK and stored at K20 8C until staining. Primary
macrophages were magnetically selected from minced liver tissue by
CD11b beads (Miltenyi Biotec, Bergisch Gladbach, Germany).
2.4. Primary liver cells

Primary hepatocytes, hepatic stellate cells (HSC) and hepatic sinusoidal
endothelial cells (HSEC) were purchased from Pharmakine (Bilbao, Spain).
2.5. Cytokine determination by ELISA

Detection of TNF-a, IL-6 and IL-10 in plasma samples was performed
strictly according to the manufacturer’s instructions using mouse specific
monoclonal antibody (mAb) pairs purchased from BD Pharmingen (San
Diego, CA).
2.6. Cytokine determination by cytometric bead array

(CBA)

TNF-a, IL-6, and IL-10 in plasma samples were determined using the
mouse inflammation kit CBA purchased from BD Pharmingen (San Diego,
CA). Analyses were performed strictly according to the manufacturer’s
instructions.
2.7. Analysis of liver enzymes

Liver injury was quantified by measurement of plasma enzyme
activities of ALT and AST using an automated procedure.
2.8. Real-time RT-PCR for TNF-a, IL-10, adiponectin,

AdipoR1 and AdipoR2 mRNA

Total RNA was prepared from liver tissue using Trizol reagent
(Invitrogen, Paisley, UK). One microgram of RNA was employed for
synthesis of cDNA using random hexamers (Roche, Mannheim, Germany)
and MMLV reverse transcriptase (GIBCO, Gaithersburg, MD) strictly
according to the manufacturer’s instructions. Primers and TaqManw Probes
specific for TNF-a and IL-10 were obtained from TaqManw Pre-Developed
Assay Reagents (Applied Biosystems, Foster City, CA). For adiponectin,
AdipoR1 and AdipoR2 primers and probes were as follows:
5 0-CCGGAACCCCTGGCAG-3 0, 5 0-CCGGAACCCCTGGCAG-3 0,
FAM-AAAGGAGAGC CTGGAGAAGCCGCTT-TAMRA, 5 0-
CACTTCCCATGTGCATTCCC-3 0, 5 0-CCCACG TCCTATCTGT-
GAAGG-3 0, FAM-ACCTCGGCAAGGCAACTGCTGC-TAMRA, and
5 0-AGGAG TGTTCGTGGGCTTAGG-3 0, 5 0-CAGCCTTCAG-
GAACCCTT CTG-30, FAM-TGAGTGGAATCATCCCTACCTTGCAT-
TATGTC-TAMRA. For endogenous control, the level of GUS expression
in each sample was assayed using mouse GUS Pre-developed TaqManw

Control Reagents (Applied Biosystems, Foster City, CA). Quantitative real-
time RT-PCR was performed using the ABI PRISM 7700 Sequence
Detection System (Applied Biosystems, Foster City, CA). Real-time PCR
efficiencies were acquired by amplification of a standardized dilution series
of subcutaneous fat (adiponectin), muscle (adipoR1), or liver (adipoR2)
cDNA from a Con A-challenged control mouse. The respective cDNAs
were further used as controls and arbitrarily set as 1.
2.9. DNA fragmentation

In situ detection of DNA fragments was performed using a terminal
deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end
labeling (TUNEL) test (Roche, Mannheim, Germany).
2.9.1. Immunohistochemical and immunofluorescence

stainings
Paraffin sections were deparaffinized, rehydrated and pretreated

with antigen unmasking solution (Vector, Burlingame, CA, 8 min)
followed by blocking with peroxidase blocking reagent (DAKO,
Carpinteria, CA) and 3% goat serum (Vector, ABC-Elite kit). The
sections were then incubated overnight with the polyclonal goat anti-
mouse adiponectin antibody (diluted 1:1000, RnD systems) followed
by a biotinylated anti-goat secondary antibody for 30 min (Vector,
ABC-Elite-Kit) and incubation with the avidin-peroxidase complex
(Vector, Burlingame, CA). Colour was developed using the DAB
substrate and sections were counterstained with hematoxylin (Vector,
Burlingame, CA). Cryostat sections were fixed in acetone for 10 min
and stained using the first and secondary antibodies as described
above. Subsequently, the sections were incubated with streptavidin-
TexasRed (Vector, Burlingame, CA). Double stainings using CD31
and MECA-32 (BD Pharmingen) antibodies followed by a FITC-
labeled anti-rat antibody (DAKO) were performed. A negative control
section was always included in which the primary antibody was
substituted by the corresponding isotype control. The sections were
analyzed without prior knowledge of treatment, and treatment
response. The density of adiponectinC cells was evaluated by
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examining five high power fields, making a distinction between
marked increase or few cells present.
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2.10. NF-kB activity

NF-kB activation was measured using the EZ-Detect NF-kB p65
Transcription Factor Kit (Pierce, Rockford, USA) strictly according to the
manufacturer’s instructions.
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2.11. Statistical analysis

Results are expressed as the meanGSEM. Statistical analyses were
performed using Student’s t-test. A value of P%0.05 was considered
significant. Statistical analysis was performed using the GraphPadPrism
software.
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Fig. 1. Adiponectin mRNA is detectable in healthy murine liver tissue

and is upregulated upon ConA injection. Mice were challenged either

with saline or ConA (15 mg/kg, nZ5 per group). (A) Hepatic

adiponectin, (B) AdipoR1 and AdipoR2 (C) mRNA levels were

determined by real-time PCR 8 h after ConA injection (*P%0.05).
3. Results

3.1. Adiponectin and its receptors are expressed in healthy

liver tissue and regulated upon injection of ConA

In healthy murine livers, we found a low but clearly

detectable basal expression of adiponectin (Fig. 1(A)). It

is noteworthy that special care was taken while preparing

liver tissue for mRNA-isolation to avoid any contami-

nation with mesenteric fat tissue. We further detected

abundant expression of adiponectin receptor 1 and 2

(AdipoR1 and AdipoR2) mRNA, respectively (Fig. 1(B)

and (C)). We next focussed on adiponectin expression

under conditions of acute hepatic inflammation. Therefore,

mice were injected with 15 mg/kg ConA. Real-time PCR

revealed a 2.2G0.6 fold increase of adiponectin mRNA

expression within 8 h after challenge (*P%0.05). In

contrast, acute hepatic inflammation reduced AdipoR1

and AdipoR2 mRNA expression levels to 30 and 60%,

respectively, when compared to healthy control livers

(*P%0.05).
3.2. Adiponectin is expressed by endothelial cells

and hepatocytes in healthy and inflamed liver tissue

To investigate whether the observed increase of

adiponectin mRNA was accompanied by increased

adiponectin protein levels, we performed immunohisto-

chemical stainings of healthy as well as ConA-injected

mouse livers. Adiponectin-expressing cells exhibit an

endothelial cell-like phenotype (Fig. 2(A)). In line with

the mRNA data, ConA-injection led to an increased

number of adiponectin positive cells (Fig. 2(B) and

(C)). To further define the adiponectin-producing cell

type, we performed immunofluorescence double-stain-

ings. Adiponectin positive cells, at least in part, stained

positive for the endothelial cell markers CD31

(Fig. 2(E) and (F)) and MECA-32 (Fig. 2(G)).
Fig. 2(D) and (H) depict the corresponding isotype

control.
3.3. Detection of adiponectin mRNA in isolated primary

hepatocytes, hepatic sinusoidal endothelial cells, stellate

cells and macrophages.

To investigate in more detail the hepatic adiponectin-

expressing cell-types we analysed adiponectin expression

by quantitative RT-PCR in several hepatic cell types.

According to our immunofluorescence and immunohisto-

chemical stainings we detected adiponectin mRNA in

isolated primary murine hepatic sinusoidal endothelial

cells as well as in primary hepatic stellate cells (Fig. 3).

Additionally, adiponectin mRNA was also found in

CD11b-selected primary hepatic macrophages. No



Fig. 2. Adiponectin is expressed by hepatic CD31C, MECA-32C

endothelial cells. Paraffinized tissue sections from ConA- and

saline-injected animals were stained for adiponectin. (A) Basal

hepatic adiponectin expression in healthy animals was detected in

cells showing an endothelial phenotype (see arrow). (B and C)

Increased adiponectin expression was detectable in ConA-injected

mice (magnification !100). Immunofluorescence staining revealed

that adiponectin-positive cells (red staining) co-expressed endo-

thelial cell markers such as CD31 (E and F) and MECA-32 (G)

(magnification !400). (D and H) show the corresponding isotype

control. A representative example out of three is shown.
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Fig. 3. Detection of adiponectin mRNA in isolated primary hepatic

stellate cells, hepatic sinusoidal endothelial cells, and liver macro-

phages. mRNA was obtained from isolated primary hepatocytes,

hepatic stellate cells, hepatic sinusoidal endothelial cells, and CD11b-

selected macrophages and adiponectin expression levels were deter-

mined by real-time PCR. Tissue expression levels are given relative to a

positive control as described in the Section 2.
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adiponectin mRNA was detected in isolated primary

mouse hepatocytes.
3.4. Hepatoprotective effect of adiponectin

in ConA-induced acute liver failure

As adiponectin is known to decrease TNF-a
expression in macrophages [7] and to increase the

production of anti-inflammatory cytokines we next

aimed to analyze the impact of adiponectin on TNF-

dependent acute liver failure. Therefore, we either
injected 6 mg/kg recombinant murine adiponectin or

solvent 12 h prior to application of ConA. Adiponectin

pre-treatment significantly decreased the ConA-induced

hepatotoxicity as shown by release of liver enzymes

(Fig. 4(A), *P%0.05). These data were corroborated by

a lower number of TUNEL-positive apoptotic hepatic

cells (Fig. 4(B)). Using cytometric bead arrays and

ELISA we were not able to detect significant changes in

plasma levels of TNF-a and IL-6 (Fig. 4(C) and (D)).

However, IL-10 production was significantly increased

in adiponectin-treated mice (Fig. 4(E), *P%0.05).

Comparable results were obtained for hepatic mRNA

regulation as determined by quantitative RT-PCR:

Adiponectin did not change hepatic TNF-a mRNA

expression, whereas IL-10 mRNA expression was

increased by adiponectin (data not shown). Thus, the

protective effect of adiponectin administration in this

model does not appear to be mediated by reduced intra-

hepatic TNF-a levels.
3.5. The hepatoprotective effect of adiponectin

is partially mediated by IL-10

We next tested whether the induction of IL-10 is causally

involved in adiponectin-induced hepatoprotection. There-

fore, animals were injected with a neutralizing antibody

directed against IL-10 prior to either adiponectin- or ConA-

injection. In line with previous reports, neutralisation of IL-

10 resulted in increased ConA-induced TNF-a production

(Fig. 5(A), P!0.05). Notably, anti-IL-10 treatment in part

abrogated the hepatoprotective effects of adiponectin as

shown by liver enzyme release: in contrast to the significant

reduction of ALT release by adiponectin, ALT levels in the

anti-IL10 pre-treated group did not statistically differ from

the saline/ConA control group (Fig. 5(B), *P%0.05 for
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Fig. 4. Hepatoprotective effect of adiponectin in ConA-induced acute liver failure. Either adiponectin or saline-pre-treated mice were challenged with

Con A (15 mg/kg, nZ8 per group). (A) Plasma ALT-levels were determined 8 h after Con A injection (*P%0.05). (B) Adiponectin markedly reduced

the induction of apoptosis detected by TUNEL-staining 8 h after challenge. A representative example from each group is shown (magnification !100).

(C) TNF-a, and (D) IL-6 plasma levels were determined 2 h and (E) IL-10 plasma levels (*P!0.05) were determined 8 h after ConA injection by

ELISA.
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Adipo/ConA vs. saline/ConA and PO0.05 for a-IL10/

Adipo/ConA vs. saline/ConA).
3.6. The ConA-mediated hepatic NF-kB activation

is significantly down-regulated by adiponectin

NF-kB represents a key transcription factor for the

regulation of ConA-induced cytokine gene expression [8].

We, therefore, analyzed the activation of NF-kB p65 upon

ConA-injection in mice pre-treated with either adiponectin

or solvent. Indeed, ConA-mediated activation of NF-kB was
significantly inhibited by adiponectin pre-exposure (Fig. 6,

*P%0.05).
4. Discussion

Adiponectin, the most abundant adipokine in humans,

has recently been shown to exert potent anti-inflammatory

effects in humans and in mice. To date, the regulation of

adiponectin has been nearly exclusively studied in the

adipocyte, which has been considered the unique site of

adiponectin production under physiological conditions [9].

However, two recent studies reported that adiponectin gene



Sali
ne

Sali
ne

/C
on

A

Adip
o/

Con
A

a-
IL

10
/A

dip
o/

Con
A

0

25

50

75

100
T

N
F

-a
 [p

g/
m

l ±
S

E
M

]
A

B

0

5000

10000

A
LT

 [U
/L

 ±
S

E
M

]

Sali
ne

Sali
ne

/C
on

A

Adip
o/

Con
A

a-
IL

10
/A

dip
o/

Con
A

*

Fig. 5. The hepatoprotective effect of adiponectin is partially mediated

by IL-10. Either adiponectin/ConA or saline/ConA treated mice were

pre-treated with a neutralizing IL-10 antibody (3 mg/mouse, nZ4 per

group) followed by ConA injection. (A) Plasma TNF-levels were

determined 2 h after ConA injection by ELISA (B) Plasma ALT-levels

were determined 8 h after ConA injection (*P!0.05).
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expression is inducable in human myotubes upon stimu-

lation with pro-inflammatory cytokines, such as IFN-g and

TNF-a [5,6]. In the current study, we show that apart from

high expression in adipose tissue, adiponectin is also

expressed in non-inflammatory murine liver tissue. Real-
0

250

500

*

Saline+ConA
Adipo+ConA

N
F

-k
B

 in
du

ct
io

n
[x

-f
ol

d 
in

du
ct

io
n 

vs
. c

tr
l.]

Fig. 6. Down-regulation of ConA-mediated hepatic NF-kB activation

by adiponectin. Whole liver lysates were prepared from either

adiponectin/ConA- or saline/ConA-treated mice and NF-kB p65

activation was determined using a chemiluminescent assay (nZ4,

*P%0.05).
time PCR revealed that adiponectin mRNA is produced in

several cells types i.e. isolated primary murine liver

sinusoidal endothelial cells, hepatic stellate cells and liver

macrophages. Induction of acute hepatic inflammation by

ConA led to a significant up-regulation of adiponectin.

These data are corroborated by a recent report from Yoda-

Murakami and co-workers showing an increase of adipo-

nectin in inflamed liver tissue induced by injection of CCl4
[10]. ConA-induced hepatic inflammation is characterized

by highly elevated systemic as well as hepatic TNF-a levels

[11]. In addition, adiponectin has been shown to be a major

antagonist of TNF-a production in several cell types [7,12].

Thus, its induction under conditions of acute inflammation

within hepatic tissue might counteract the pro-inflammatory

actions of TNF-a thereby forming a negative feedback loop

attempting to counterbalance hepatic inflammation in vivo.

In line with this idea, Maeda and co-workers recently

demonstrated that adiponectin-deficient mice revealed high

levels of TNF-a mRNA in adipose tissue as well as high

plasma TNF-a concentration [13]. Moreover, adiponectin-

treatment protects KK-Ay obese mice, which are charac-

terized by low circulating adiponectin levels from TNF-a-

mediated acute hepatic failure induced by LPS [12]. The

authors nicely demonstrate that the protective effect of

adiponectin in KK-Ay obese mice is primarily mediated by

down-regulating the sensitivity of hepatocytes to TNF-

induced apoptosis, without affecting cytokine levels in these

animals.

We extend these findings by showing that application of

adiponectin to BALB/c mice markedly attenuated liver

inflammation induced by ConA. In line with the findings

from Sennello and co-workers [14], we were not able to

detect a down-regulation of either circulating or hepatic

TNF-a levels. Therefore, adiponectin probably exerts its

hepatoprotective effects in the model of acute liver

inflammation induced by ConA by a mechanism indepen-

dent of TNF-a down-regulation. We and others recently

described an anti-inflammatory role of adiponectin on

in vitro cultured myeloid cells [3,4,7]. Pre-treatment of

monocytes and monocyte-derived cells (i.e. macrophages

and dendritic cells) with adiponectin impairs the LPS-

induced production of pro-inflammatory cytokines. This

effect is paralleled by an increased production of anti-

inflammatory cytokines, such as IL-10. Accordingly,

adiponectin pre-treatment significantly increased IL-10

production in ConA-injected animals. Blocking IL-10 by

neutralizing antibodies partially reversed the beneficial

effects of adiponectin in vivo. Thus, induction of IL-10

seems to play at least a partial role in the protective effects

of adiponectin. The TNF-a/NF-kB pathway plays a critical

role in inflammatory signaling processes. Adiponectin was

demonstrated to suppress TNF-a-induced activation of

nuclear factor-kB (NF-kB) in endothelial cells, therefore,

acting as an endogenous biologically relevant modulator of

endothelial cell responses to pro-inflammatory stimuli [15].

Moreover, adiponectin has been shown to inhibit
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LPS-induced activation of NF-kB in adipocyte cell lines.

According to this data, adiponectin inhibited hepatic NF-kB

signaling in ConA-induced acute liver failure. Recent

reports demonstrated that hepatoprotective and anti-

apoptotic molecules such as S-Adenosylmethionine

and PGE1 may reduce NF-kB activation in hepatocytes

[16,17]. However, further signaling pathways being

involved in the anti-apoptotic effects of adiponectin in

hepatocytes remain to be elucidated. The activation of the

AMP-kinase for example has been shown to be involved in

protection from mitogen-deprivation induced cell death in

HUVEC [18].

In conclusion, our data clearly show that under

inflammatory conditions adiponectin can be produced by

other cell types, i.e. by hepatic endothelial and stellate

cells. Application of adiponectin decreases hepatic

injury, which suggests that adiponectin may play an

important role in the control and limitation of

inflammatory processes in the liver.
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