21 research outputs found

    Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft

    Get PDF
    The particle fabrication technique PRINT® was used to fabricate monodisperse size and shape specific poly(lactide-co-glycolide) particles loaded with the chemotherapeutic Docetaxel. The pharmacokinetics of two cylindrical shaped particles with diameter=80nm; height=320nm (PRINT-Doc-80×320) and d=200nm; h=200nm (PRINT-Doc-200×200) were compared to Docetaxel in mice bearing human ovarian carcinoma SKOV-3 flank xenografts. The Docetaxel plasma exposure was ~20-fold higher for both particles compared to docetaxel. Additionally, the volume of distribution (Vd) of Docetaxel in PRINT formulations was ~18-fold (PRINT-Doc-80×320) and ~33-fold (PRINT-Doc-200×200) lower than Docetaxel. The prolonged duration of Docetaxel in plasma when dosed with PRINT formulations subsequently lead to increased tumor exposure of Docetaxel from 0-168 hours (~53% higher for PRINT-Doc-80×320 and ~76% higher for PRINT-Doc-200×200 particles). PRINT-Doc-80×320 had lower exposures in the liver, spleen and lung compared with PRINT-Doc-200×200. Thus, the use of particles with smaller feature size may be preferred to decrease clearance by organs of the mononuclear phagocyte system

    Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation

    Get PDF
    This study demonstrates a novel approach to characterizing hydrated bone's viscoelastic behavior at lamellar length scales using dynamic indentation techniques. We studied the submicron-level viscoelastic response of bone tissue from two different inbred mouse strains, A/J and B6, with known differences in whole bone and tissue-level mechanical properties. Our results show that bone having a higher collagen content or a lower mineral-to-matrix ratio demonstrates a trend towards a larger viscoelastic response. When normalized for anatomical location relative to biological growth patterns in the antero-medial (AM) cortex, bone tissue from B6 femora, known to have a lower mineral-to-matrix ratio, is shown to exhibit a significantly higher viscoelastic response compared to A/J tissue. Newer bone regions with a higher collagen content (closer to the endosteal edge of the AM cortex) showed a trend towards a larger viscoelastic response. Our study demonstrates the feasibility of this technique for analyzing local composition-property relationships in bone. Further, this technique of viscoelastic nanoindentation mapping of the bone surface at these submicron length scales is shown to be highly advantageous in studying subsurface features, such as porosity, of wet hydrated biological specimens, which are difficult to identify using other methods

    Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians

    Get PDF
    BACKGROUND: Later Pleistocene human evolution in East Asia remains poorly understood owing to a scarcity of well described, reliably classified and accurately dated fossils. Southwest China has been identified from genetic research as a hotspot of human diversity, containing ancient mtDNA and Y-DNA lineages, and has yielded a number of human remains thought to derive from Pleistocene deposits. We have prepared, reconstructed, described and dated a new partial skull from a consolidated sediment block collected in 1979 from the site of Longlin Cave (Guangxi Province). We also undertook new excavations at Maludong (Yunnan Province) to clarify the stratigraphy and dating of a large sample of mostly undescribed human remains from the site. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a detailed comparison of cranial, including a virtual endocast for the Maludong calotte, mandibular and dental remains from these two localities. Both samples probably derive from the same population, exhibiting an unusual mixture of modern human traits, characters probably plesiomorphic for later Homo, and some unusual features. We dated charcoal with AMS radiocarbon dating and speleothem with the Uranium-series technique and the results show both samples to be from the Pleistocene-Holocene transition: ∼14.3-11.5 ka. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests two plausible explanations for the morphology sampled at Longlin Cave and Maludong. First, it may represent a late-surviving archaic population, perhaps paralleling the situation seen in North Africa as indicated by remains from Dar-es-Soltane and Temara, and maybe also in southern China at Zhirendong. Alternatively, East Asia may have been colonised during multiple waves during the Pleistocene, with the Longlin-Maludong morphology possibly reflecting deep population substructure in Africa prior to modern humans dispersing into Eurasia

    Étude du rôle de la microglie dans l'infection du système nerveux central par le virus Zika dans un modèle murin

    No full text
    Depuis sa réémergence durant l'épidémie de 2013-2017 dans les régions du Pacifique et des Amériques, le virus Zika a été associé à plusieurs complications neurologiques chez l'adulte. L'immunité innée représente une composante importante de la réponse immunitaire au sein du système nerveux central (SNC). Nous avons donc postulé que les microglies, macrophages résidents du SNC, jouent un rôle actif dans le développement de la réponse initiale à l'infection du cerveau mature par le virus Zika. Nous avons utilisé un modèle murin non létal, déficient pour des composantes de l'immunité innée, pour étudier le rôle des microglies dans la pathogénèse et la réponse immunitaire lors de l'infection du SNC. Les souris infectées présentaient une virémie et une charge virale cérébrale élevées sans manifestations cliniques de l'infection. Une analyse immunohistochimique a montré que le virus Zika était distribué dans plusieurs régions du cerveau, particulièrement dans l'hippocampe dorsal. Dans cette région, le nombre de microglies est demeuré stable après l'infection, mais elles montraient des caractéristiques morphologiques compatibles avec un état de réactivité. Une analyse ultrastructurelle en microscopie électronique a révélé que les microglies présentaient une activité phagocytaire et une digestion extracellulaire accrues durant l'infection. La déplétion pharmacologique des microglies a provoqué une augmentation de la réplication virale et les astrocytes présentaient une activité phagocytaire compensatoire. Dans l'ensemble, ces résultats montrent que les microglies sont impliquées dans le contrôle de la réplication du virus Zika et dans son élimination phagocytaire au sein du SNC de souris jeunes adultes immunodéficientes.Since its re-emergence during the 2013-2017 epidemic across the Pacific and the Americas, Zika virus has been associated with several neurological complications in adults. Because innate immunity is an important component of the immune response within the central nervous system (CNS), we postulated that microglia, the resident macrophages of the CNS, play an active role in the development of the initial response to infection of the mature brain with Zika virus. We used a non-lethal mouse model deficient in components of innate immunity to study the role of microglia in the pathogenesis and immune response of Zika virus infection of the CNS. Infected mice developed elevated viremia and brain viral load without showing clinical signs of infection. Immunohistochemical analysis showed that Zika virus was distributed in several regions of the brain, predominantly in the dorsal hippocampus. In this region, the number of microglia remained steady after infection with Zika virus, but microglia adopted morphological characteristics consistent with a state of reactivity. Ultrastructural analysis by electron microscopy revealed that microglia exhibited increased phagocytic activity and extracellular digestion during infection. Pharmacological depletion of microglia caused an increase in viral replication and astrocytes exhibited compensatory phagocytic activity. Taken together, these results show that microglia are involved in the control of Zika virus replication and its phagocytic elimination within the brain of immunodeficient young adult mice

    Data_Sheet_1_A biomarker discovery framework for childhood anxiety.PDF

    No full text
    IntroductionAnxiety is the most common manifestation of psychopathology in youth, negatively affecting academic, social, and adaptive functioning and increasing risk for mental health problems into adulthood. Anxiety disorders are diagnosed only after clinical symptoms emerge, potentially missing opportunities to intervene during critical early prodromal periods. In this study, we used a new empirical approach to extracting nonlinear features of the electroencephalogram (EEG), with the goal of discovering differences in brain electrodynamics that distinguish children with anxiety disorders from healthy children. Additionally, we examined whether this approach could distinguish children with externalizing disorders from healthy children and children with anxiety.MethodsWe used a novel supervised tensor factorization method to extract latent factors from repeated multifrequency nonlinear EEG measures in a longitudinal sample of children assessed in infancy and at ages 3, 5, and 7 years of age. We first examined the validity of this method by showing that calendar age is highly correlated with latent EEG complexity factors (r = 0.77). We then computed latent factors separately for distinguishing children with anxiety disorders from healthy controls using a 5-fold cross validation scheme and similarly for distinguishing children with externalizing disorders from healthy controls.ResultsWe found that latent factors derived from EEG recordings at age 7 years were required to distinguish children with an anxiety disorder from healthy controls; recordings from infancy, 3 years, or 5 years alone were insufficient. However, recordings from two (5, 7 years) or three (3, 5, 7 years) recordings gave much better results than 7 year recordings alone. Externalizing disorders could be detected using 3- and 5 years EEG data, also giving better results with two or three recordings than any single snapshot. Further, sex assigned at birth was an important covariate that improved accuracy for both disorder groups, and birthweight as a covariate modestly improved accuracy for externalizing disorders. Recordings from infant EEG did not contribute to the classification accuracy for either anxiety or externalizing disorders.ConclusionThis study suggests that latent factors extracted from EEG recordings in childhood are promising candidate biomarkers for anxiety and for externalizing disorders if chosen at appropriate ages.</p

    Microglia are involved in phagocytosis and extracellular digestion during Zika virus encephalitis in young adult immunodeficient mice

    No full text
    Background Zika virus (ZIKV) has been associated with several neurological complications in adult patients. Methods We used a mouse model deficient in TRIF and IPS-1 adaptor proteins, which are involved in type I interferon production, to study the role of microglia during brain infection by ZIKV. Young adult mice were infected intravenously with the contemporary ZIKV strain PRVABC59 (1 × 10⁵ PFUs/100 µL). Results Infected mice did not present overt clinical signs of the disease nor body weight loss compared with noninfected animals. However, mice exhibited a viremia and a brain viral load that were maximal (1.3 × 10⁵ genome copies/mL and 9.8 × 10⁷ genome copies/g of brain) on days 3 and 7 post-infection (p.i.), respectively. Immunohistochemistry analysis showed that ZIKV antigens were distributed in several regions of the brain, especially the dorsal hippocampus. The number of Iba1⁺/TMEM119⁺ microglia remained similar in infected versus noninfected mice, but their cell body and arborization areas significantly increased in the stratum radiatum and stratum lacunosum-moleculare layers of the dorsal hippocampus cornu ammoni (CA)1, indicating a reactive state. Ultrastructural analyses also revealed that microglia displayed increased phagocytic activities and extracellular digestion of degraded elements during infection. Mice pharmacologically depleted in microglia with PLX5622 presented a higher brain viral load compared to untreated group (2.8 × 10¹⁰ versus 8.5 × 10⁸ genome copies/g of brain on day 10 p.i.) as well as an increased number of ZIKV antigens labeled with immunogold in the cytoplasm and endoplasmic reticulum of neurons and astrocytes indicating an enhanced viral replication. Furthermore, endosomes of astrocytes contained nanogold particles together with digested materials, suggesting a compensatory phagocytic activity upon microglial depletion. Conclusions These results indicate that microglia are involved in the control of ZIKV replication and/or its elimination in the brain. After depletion of microglia, the removal of ZIKV-infected cells by phagocytosis could be partly compensated by astrocytes.Medicine, Faculty ofNon UBCBiochemistry and Molecular Biology, Department ofReviewedFacult
    corecore