Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft

Abstract

The particle fabrication technique PRINT® was used to fabricate monodisperse size and shape specific poly(lactide-co-glycolide) particles loaded with the chemotherapeutic Docetaxel. The pharmacokinetics of two cylindrical shaped particles with diameter=80nm; height=320nm (PRINT-Doc-80×320) and d=200nm; h=200nm (PRINT-Doc-200×200) were compared to Docetaxel in mice bearing human ovarian carcinoma SKOV-3 flank xenografts. The Docetaxel plasma exposure was ~20-fold higher for both particles compared to docetaxel. Additionally, the volume of distribution (Vd) of Docetaxel in PRINT formulations was ~18-fold (PRINT-Doc-80×320) and ~33-fold (PRINT-Doc-200×200) lower than Docetaxel. The prolonged duration of Docetaxel in plasma when dosed with PRINT formulations subsequently lead to increased tumor exposure of Docetaxel from 0-168 hours (~53% higher for PRINT-Doc-80×320 and ~76% higher for PRINT-Doc-200×200 particles). PRINT-Doc-80×320 had lower exposures in the liver, spleen and lung compared with PRINT-Doc-200×200. Thus, the use of particles with smaller feature size may be preferred to decrease clearance by organs of the mononuclear phagocyte system

    Similar works