71 research outputs found
ZRT1 harbors an excess of nonsynonymous polymorphism and shows evidence of balancing selection in Saccharomyces cerevisiae
Estimates of the fraction of nucleotide substitutions driven by positive
selection vary widely across different species. Accounting for different
estimates of positive selection has been difficult, in part because selection
on polymorphism within a species is known to obscure a signal of positive
selection between species. While methods have been developed to control for the
confounding effects of negative selection against deleterious polymorphism, the
impact of balancing selection on estimates of positive selection has not been
assessed. In Saccharomyces cerevisiae, there is no signal of positive selection
within protein coding sequences as the ratio of nonsynonymous to synonymous
polymorphism is higher than that of divergence. To investigate the impact of
balancing selection on estimates of positive selection we examined five genes
with high rates of nonsynonymous polymorphism in S. cerevisiae relative to
divergence from S. paradoxus. One of the genes, a high affinity zinc
transporter ZRT1, shows an elevated rate of synonymous polymorphism indicative
of balancing selection. The high rate of synonymous polymorphism coincides with
nonsynonymous divergence between three haplotype groups, which we find to be
functionally indistinguishable. We conclude that balancing selection is not
likely to be a common cause of genes harboring a large excess of nonsynonymous
polymorphism in yeast
Crystalline cataract caused by a heterozygous missense mutation in γD-crystallin (CRYGD)
Purpose: To describe phenotypic characteristics of two pedigrees manifesting early onset crystalline cataract with mutations in the γD-crystallin gene (CRYGD). Methods: A detailed medical history was obtained from two Caucasian pedigrees manifesting autosomal dominant congenital cataracts. Genomic DNA was extracted from saliva (DNA Genotek). Single Nucleotide Polymorphism (SNP) based genome analysis of the larger pedigree revealed linkage to an 8.2 MB region on chromosome 2q33-q35 which encompassed the crystallin-gamma gene cluster (CRYG). Exons and flanking introns of CRYGA, CRYGB, CRYGC and CRYGD were amplified and sequenced to identify disease-causing mutations. Results: A morphologically unique cataract with extensive refractile “crystals ” scattered throughout the nucleus and perinuclear cortex was found in the probands from both pedigrees. A heterozygous C→A mutation was identified at position 109 of the coding sequence (R36S of the processed protein) in exon 2 of CRYGD and this missense mutation was found to cosegregate with the disease in the larger family; this mutation was then identified in affected individuals of pedigree 2 as well. Conclusions: The heterozygous 109C→A CRYGD missense mutation is associated with a distinct crystalline cataract in two US Caucasian pedigrees. This confirms crystalline cataract formation with this mutation, as previously reported in sporadic childhood case from the Czech Republic and in members of a Chinese family
The cost-effectiveness of small-quantity lipid-based nutrient supplements for prevention of child death and malnutrition and promotion of healthy development: modeling results for Uganda
Abstract
Objective:
Recent meta-analyses demonstrate that small-quantity lipid-based nutrient supplements (SQ-LNS) for young children significantly reduce child mortality, stunting, wasting, anemia and adverse developmental outcomes. Cost considerations should inform policy decisions. We developed a modeling framework to estimate the cost and cost-effectiveness of SQ-LNS and apply the framework in the context of rural Uganda.
Design:
We adapted costs from a costing study of micronutrient powder (MNP) in Uganda, and based effectiveness estimates on recent meta-analyses and Uganda-specific estimates of baseline mortality and the prevalence of stunting, wasting, anemia, and developmental disability.
Setting:
Rural Uganda.
Participants:
Not applicable.
Results:
Providing SQ-LNS daily to all children in rural Uganda (>1 million) for 12 months (from 6-18 months of age) via the existing Village Health Team system would cost ∼58.7 million annually. Annually, SQ-LNS could avert an average of >242,000 disability adjusted life years (DALYs) as a result of preventing 3,689 deaths, >160,000 cases of moderate or severe anemia, and ∼6,000 cases of developmental disability. The estimated cost per DALY averted is $242.
Conclusions:
In this context, SQ-LNS may be more cost-effective than other options such as MNP or the provision of complementary food, although the total cost for a program including all age-eligible children would be high. Strategies to reduce costs, such as targeting to the most vulnerable populations and the elimination of taxes on SQ-LNS, may enhance financial feasibility
Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance
Changes in gene expression are commonly observed during evolution. However, the phenotypic consequences of expression divergence are frequently unknown and difficult to measure. Transcriptional regulators provide a mechanism by which phenotypic divergence can occur through multiple, coordinated changes in gene expression during development or in response to environmental changes. Yet, some changes in transcriptional regulators may be constrained by their pleiotropic effects on gene expression. Here, we use a genome-wide screen for promoters that are likely to have diverged in function and identify a yeast transcription factor, FZF1, that has evolved substantial differences in its ability to confer resistance to sulfites. Chimeric alleles from four Saccharomyces species show that divergence in FZF1 activity is due to changes in both its coding and upstream noncoding sequence. Between the two closest species, noncoding changes affect the expression of FZF1, whereas coding changes affect the expression of SSU1, a sulfite efflux pump activated by FZF1. Both coding and noncoding changes also affect the expression of many other genes. Our results show how divergence in the coding and promoter region of a transcription factor alters the response to an environmental stress
A preliminary randomized double blind placebo-controlled trial of intravenous immunoglobulin for Japanese encephalitis in Nepal
BACKGROUND: Japanese encephalitis (JE) virus (JEV) is a mosquito-borne flavivirus found across Asia that is closely related to West Nile virus. There is no known antiviral treatment for any flavivirus. Results from in vitro studies and animal models suggest intravenous immunoglobulin (IVIG) containing virus-specific neutralizing antibody may be effective in improving outcome in viral encephalitis. IVIG's anti-inflammatory properties may also be beneficial. METHODOLOGY/PRINCIPAL FINDINGS: We performed a pilot feasibility randomized double-blind placebo-controlled trial of IVIG containing anti-JEV neutralizing antibody (ImmunoRel, 400mg/kg/day for 5 days) in children with suspected JE at two sites in Nepal; we also examined the effect on serum neutralizing antibody titre and cytokine profiles. 22 children were recruited, 13 of whom had confirmed JE; 11 received IVIG and 11 placebo, with no protocol violations. One child (IVIG group) died during treatment and two (placebo) subsequently following hospital discharge. Overall, there was no difference in outcome between treatment groups at discharge or follow up. Passive transfer of anti-JEV antibody was seen in JEV negative children. JEV positive children treated with IVIG had JEV-specific neutralizing antibody titres approximately 16 times higher than those treated with placebo (p=0.2), which was more than could be explained by passive transfer alone. IL-4 and IL-6 were higher in the IVIG group. CONCLUSIONS/SIGNIFICANCE: A trial of IVIG for JE in Nepal is feasible. IVIG may augment the development of neutralizing antibodies in JEV positive patients. IVIG appears an appealing option for JE treatment that warrants further study. TRIAL REGISTRATION: ClinicalTrials.gov NCT01856205
Early life child micronutrient status, maternal reasoning, and a nurturing household environment have persistent influences on child cognitive development at age 5 years: Results from MAL-ED
Background: Child cognitive development is influenced by early-life insults and protective factors. To what extent these factors have a long-term legacy on child development and hence fulfillment of cognitive potential is unknown. Objective: The aim of this study was to examine the relation between early-life factors (birth to 2 y) and cognitive development at 5 y. Methods: Observational follow-up visits were made of children at 5 y, previously enrolled in the community-based MAL-ED longitudinal cohort. The burden of enteropathogens, prevalence of illness, complementary diet intake, micronutrient status, and household and maternal factors from birth to 2 y were extensively measured and their relation with the Wechsler Preschool Primary Scales of Intelligence at 5 y was examined through use of linear regression. Results: Cognitive T-scores from 813 of 1198 (68%) children were examined and 5 variables had significant associations in multivariable models: mean child plasma transferrin receptor concentration (β: −1.81, 95% CI: −2.75, −0.86), number of years of maternal education (β: 0.27, 95% CI: 0.08, 0.45), maternal cognitive reasoning score (β: 0.09, 95% CI: 0.03, 0.15), household assets score (β: 0.64, 95% CI: 0.24, 1.04), and HOME child cleanliness factor (β: 0.60, 95% CI: 0.05, 1.15). In multivariable models, the mean rate of enteropathogen detections, burden of illness, and complementary food intakes between birth and 2 y were not significantly related to 5-y cognition. Conclusions: A nurturing home context in terms of a healthy/clean environment and household wealth, provision of adequate micronutrients, maternal education, and cognitive reasoning have a strong and persistent influence on child cognitive development. Efforts addressing aspects of poverty around micronutrient status, nurturing caregiving, and enabling home environments are likely to have lasting positive impacts on child cognitive development.publishedVersio
Ophthalmology
To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). Multicenter, observational study. A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …