2,014 research outputs found
A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio
The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements
This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by s=0.5 ppm over the continents and s=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transpor
Minimizing gravitational lensing contributions to the primordial bispectrum covariance
The next generation of ground-based cosmic microwave background (CMB) experiments aim to measure temperature and polarization fluctuations up to ℓmax≈5000 over half of the sky. Combined with Planck data on large scales, this will provide improved constraints on primordial non-Gaussianity. However, the impressive resolution of these experiments will come at a price. Besides signal confusion from galactic foregrounds, extragalactic foregrounds, and late-time gravitational effects, gravitational lensing will introduce large non-Gaussianity that can become the leading contribution to the bispectrum covariance through the connected four-point function. Here, we compute this effect analytically for the first time on the full sky for both temperature and polarization. We compare our analytical results with those obtained directly from map-based simulations of the CMB sky for several levels of instrumental noise. Of the standard shapes considered in the literature, the local shape is most affected, resulting in a 35% increase of the estimator standard deviation for an experiment such as the Simons Observatory (SO) and a 110% increase for a cosmic-variance limited experiment, including both temperature and polarization modes up to ℓmax=3800. Because of the nature of the lensing four-point function, the impact on other shapes is reduced while still non-negligible for the orthogonal shape. Two possible avenues to reduce the non-Gaussian contribution to the covariance are proposed: First by marginalizing over lensing contributions, such as the Integrated Sachs Wolfe (ISW)-lensing three-point function in temperature, and second by delensing the CMB. We show the latter method can remove almost all extra covariance, reducing the effect to below <5% for local bispectra. At the same time, delensing would remove signal biases from secondaries induced by lensing, such as ISW lensing. We aim to apply both techniques directly to the forthcoming SO data when searching for primordial non-Gaussianity
Measurement of the temperature of an ultracold ion source using time-dependent electric fields
We report on a measurement of the characteristic temperature of an ultracold
rubidium ion source, in which a cloud of laser-cooled atoms is converted to
ions by photo-ionization. Extracted ion pulses are focused on a detector with a
pulsed-field technique. The resulting experimental spot sizes are compared to
particle-tracking simulations, from which a source temperature
mK and the corresponding transversal reduced emittance m rad are determined. We find that this result is
likely limited by space charge forces even though the average number of ions
per bunch is 0.022.Comment: 8 pages, 11 figure
The point of maximum curvature as a marker for physiological time series
We present a geometric analysis of the model of Stirling. In particular we analyze the curvature of a heart rate time series in response to a step like increment in the exercise intensity. We present solutions for the point of maximum curvature which can be used as a marker of physiological interest. This marker defines the point after which the heart rate no longer continues to rapidly rise and instead follows either a steady state or slow rise. These methods are then applied to find analytic solutions for a mono exponential model which is commonly used in the literature to model the response to a moderate exercise intensity. Numerical solutions are then found for the full model and parameter values presented in Stirling
Background error covariance estimation for atmospheric CO 2 data assimilation
In any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO 2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble‐based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO 2 transport model. We propose an approach where the differences between two modeled CO 2 concentration fields, based on different but plausible CO 2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO 2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state‐of‐the‐art four‐dimensional variational (4D‐VAR) system developed at the European Centre for Medium‐Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO 2 concentration estimates. Observations from the Greenhouse gases Observing SATellite “IBUKI” (GOSAT) are assimilated into the ECMWF 4D‐VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast‐based technique. Evaluation of the four‐dimensional CO 2 fields against independent CO 2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present. Key Points Difference in modeled CO2 fields is used to define background errors in CO2‐DA Both atmospheric transport & flux pattern differences impact background errors Evaluation using independent data shows positive impact on analysis estimatesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100305/1/jgrd50654.pd
Light Baryon Resonances: Restrictions and Perspectives
The problem of nucleon resonances N' with masses below the Delta is
considered. We derive bounds for the properties of such states. Some of these
are new, while others improve upon existing limits. We discuss the nature of N'
states, and their unitary partners, assuming their existence can be verified.Comment: 11 pages, 11 figur
- …