1,572 research outputs found

    Quantum biology on the edge of quantum chaos

    Get PDF
    We give a new explanation for why some biological systems can stay quantum coherent for long times at room temperatures, one of the fundamental puzzles of quantum biology. We show that systems with the right level of complexity between chaos and regularity can increase their coherence time by orders of magnitude. Systems near Critical Quantum Chaos or Metal-Insulator Transition (MIT) can have long coherence times and coherent transport at the same time. The new theory tested in a realistic light harvesting system model can reproduce the scaling of critical fluctuations reported in recent experiments. Scaling of return probability in the FMO light harvesting complex shows the signs of universal return probability decay observed at critical MIT. The results may open up new possibilities to design low loss energy and information transport systems in this Poised Realm hovering reversibly between quantum coherence and classicality

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On

    Right Temporoparietal Gray Matter Predicts Accuracy of Social Perception in the Autism Spectrum

    Get PDF
    Individuals with an autism spectrum disorder (ASD) show hallmark deficits in social perception. These difficulties might also reflect fundamental deficits in integrating visual signals. We contrasted predictions of a social perception and a spatial–temporal integration deficit account. Participants with ASD and matched controls performed two tasks: the first required spatiotemporal integration of global motion signals without social meaning, the second required processing of socially relevant local motion. The ASD group only showed differences to controls in social motion evaluation. In addition, gray matter volume in the temporal–parietal junction correlated positively with accuracy in social motion perception in the ASD group. Our findings suggest that social–perceptual difficulties in ASD cannot be reduced to deficits in spatial–temporal integration

    Distributed processing and temporal codes in neuronal networks

    Get PDF
    The cerebral cortex presents itself as a distributed dynamical system with the characteristics of a small world network. The neuronal correlates of cognitive and executive processes often appear to consist of the coordinated activity of large assemblies of widely distributed neurons. These features require mechanisms for the selective routing of signals across densely interconnected networks, the flexible and context dependent binding of neuronal groups into functionally coherent assemblies and the task and attention dependent integration of subsystems. In order to implement these mechanisms, it is proposed that neuronal responses should convey two orthogonal messages in parallel. They should indicate (1) the presence of the feature to which they are tuned and (2) with which other neurons (specific target cells or members of a coherent assembly) they are communicating. The first message is encoded in the discharge frequency of the neurons (rate code) and it is proposed that the second message is contained in the precise timing relationships between individual spikes of distributed neurons (temporal code). It is further proposed that these precise timing relations are established either by the timing of external events (stimulus locking) or by internal timing mechanisms. The latter are assumed to consist of an oscillatory modulation of neuronal responses in different frequency bands that cover a broad frequency range from <2 Hz (delta) to >40 Hz (gamma) and ripples. These oscillations limit the communication of cells to short temporal windows whereby the duration of these windows decreases with oscillation frequency. Thus, by varying the phase relationship between oscillating groups, networks of functionally cooperating neurons can be flexibly configurated within hard wired networks. Moreover, by synchronizing the spikes emitted by neuronal populations, the saliency of their responses can be enhanced due to the coincidence sensitivity of receiving neurons in very much the same way as can be achieved by increasing the discharge rate. Experimental evidence will be reviewed in support of the coexistence of rate and temporal codes. Evidence will also be provided that disturbances of temporal coding mechanisms are likely to be one of the pathophysiological mechanisms in schizophrenia

    Synchronized dynamics of cortical neurons with time-delay feedback

    Get PDF
    The dynamics of three mutually coupled cortical neurons with time delays in the coupling are explored numerically and analytically. The neurons are coupled in a line, with the middle neuron sending a somewhat stronger projection to the outer neurons than the feedback it receives, to model for instance the relay of a signal from primary to higher cortical areas. For a given coupling architecture, the delays introduce correlations in the time series at the time-scale of the delay. It was found that the middle neuron leads the outer ones by the delay time, while the outer neurons are synchronized with zero lag times. Synchronization is found to be highly dependent on the synaptic time constant, with faster synapses increasing both the degree of synchronization and the firing rate. Analysis shows that presynaptic input during the interspike interval stabilizes the synchronous state, even for arbitrarily weak coupling, and independent of the initial phase. The finding may be of significance to synchronization of large groups of cells in the cortex that are spatially distanced from each other.Comment: 21 pages, 11 figure

    Tactile Language for a Head-Mounted Sensory Augmentation Device

    Get PDF
    Sensory augmentation is one of the most exciting domains for research in human-machine biohybridicity. The current paper presents the design of a 2nd generation vibrotactile helmet as a sensory augmentation prototype that is being developed to help users to navigate in low visibility environments. The paper outlines a study in which the user navigates along a virtual wall whilst the position and orientation of the user’s head is tracked by a motion capture system. Vibrotactile feedback is presented according to the user’s distance from the virtual wall and their head orientation. The research builds on our previous work by developing a simplified “tactile language” for communicating navigation commands. A key goal is to identify language tokens suitable to a head-mounted tactile interface that are maximally informative, minimize information overload, intuitive, and that have the potential to become ‘experientially transparent

    Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70

    Get PDF
    Various subsets of invariant natural killer T (iNKT) cells with different cytokine productions develop in the mouse thymus, but the factors driving their differentiation remain unclear. Here we show that hypomorphic alleles of Zap70 or chemical inhibition of Zap70 catalysis leads to an increase of IFN-gamma-producing iNKT cells (NKT1 cells), suggesting that NKT1 cells may require a lower TCR signal threshold. Zap70 mutant mice develop IL-17-dependent arthritis. In a mouse experimental arthritis model, NKT17 cells are increased as the disease progresses, while NKT1 numbers negatively correlates with disease severity, with this protective effect of NKT1 linked to their IFN-gamma expression. NKT1 cells are also present in the synovial fluid of arthritis patients. Our data therefore suggest that TCR signal strength during thymic differentiation may influence not only IFN-gamma production, but also the protective function of iNKT cells in arthritis

    Exchange Rates and Trade Balance Adjustment: A Multi-Country Empirical Analysis

    Get PDF
    This study assesses the response of the trade balance to exchange rate fluctuations across a large number of countries. Fixed-effects regressions are estimated for three country groups (industrial, developing and emerging markets) on annual data for 87 countries from 1994 to 2010. The trade balance improves significantly after a real depreciation, and to a similar degree, in the long run for all countries, but the adjustment is significantly slower for industrial countries. Emerging markets and developing countries display relatively fast adjustment. Disaggregation into exports and imports shows that the delayed adjustment in industrial countries is almost entirely on the export side. The rate of adjustment in emerging markets is slowing over time, consistent with their eventual graduation to high-income status. The ratio of trade to GDP is also highly sensitive to the real effective exchange rate, with a real depreciation of 10 % raising the trade/GDP ratio across the sample by approximately 4 %. This result, which presumably reflects movements in the prices of tradables relative to non-tradables, raises questions about the widespread use of the trade/GDP ratio as a trade policy indicator, without adjustment for real exchange rate effects

    The dune effect on sand-transporting winds on Mars

    Get PDF
    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes’ on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today
    corecore