358 research outputs found
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
Transition Radiation Spectroscopy with Prototypes of the ALICE TRD
We present measurements of the transition radiation (TR) spectrum produced in
an irregular radiator at different electron momenta. The data are compared to
simulations of TR from a regular radiator.Comment: 4 pages, 5 Figures, Proceedings for "TRDs for the 3rd millennium"
(Sept. 4-7, 2003, Bari, Italy
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Evaluation of GBT-FPGA for timing and fast control in CBM experiment
Timing and Fast Control (TFC) system for the Compressed Baryonic Matter (CBM) experiment is being developed with focus on low and deterministic data transmission latency. This helps to minimize data corruption in the free-streaming Data Acquisition (DAQ) system during occasional data bursts caused by the expected beam intensity fluctuations. Proven in latency-optimized experimental data transport applications, the GBT-FPGA core is expected to positively contribute to the TFC system performance. In this work, the core has been integrated as the primary communication interface and its effect on transmission latency and quality of time distribution has been evaluated
- …
