84 research outputs found

    The numerical solution of compressible fluid flow problems

    Get PDF
    Numerical methods have been developed for obtaining the steady, adiabatic flow field of a frictionless, perfect gas about arbitrary two-dimensional bodies. The solutions include the subsonic velocity regions, the supersonic velocity regions, and the transition compression shocks, if required. Furthermore, the rotational motion and entropy changes following shocks are taken into account. Extensive use is made of the relaxation method. In this report the details of the methods of solution are emphasized so as to permit others to solve similar problems. Solutions already obtained are mentioned only by way of illustrating the possibilities of the methods described. The methods can be applied directly to wind tunnel and free air tests of arbitrary airfoil shapes at subsonic, sonic, and supersonic speeds

    The medical student

    Full text link
    The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019 : Update From the GBD 2019 Study

    Get PDF
    Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases

    Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study

    Get PDF
    Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases

    How might acupuncture work? A systematic review of physiologic rationales from clinical trials

    Get PDF
    BACKGROUND: Scientific interest in acupuncture has led numerous investigators to conduct clinical trials to test the efficacy of acupuncture for various conditions, but the mechanisms underlying acupuncture are poorly understood. METHODS: The author conducted a PubMed search to obtain a fair sample of acupuncture clinical trials published in English in 2005. Each article was reviewed for a physiologic rationale, as well as study objectives and outcomes, experimental and control interventions, country of origin, funding sources and journal type. RESULTS: Seventy-nine acupuncture clinical trials were identified. Twenty-six studies (33%) offered no physiologic rationale. Fifty-three studies (67%) posited a physiologic basis for acupuncture: 33 (62% of 53) proposed neurochemical mechanisms, 2 (4%) segmental nervous system effects, 6 (11%) autonomic nervous system regulation, 3 (6%) local effects, 5 (9%) effects on brain function and 5 (9%) other effects. No rationale was proposed for stroke; otherwise having a rationale was not associated with objective, positive or negative findings, means of intervention, country of origin, funding source or journal type. The dominant explanation for how acupuncture might work involves neurochemical responses and is not reported to be dependent on treatment objective, specific points, means or method of stimulation. CONCLUSION: Many acupuncture trials fail to offer a meaningful rationale, but proposing a rationale can help investigators to develop and test a causal hypothesis, choose an appropriate control and rule out placebo effects. Acupuncture may stimulate self-regulatory processes independent of the treatment objective, points, means or methods used; this would account for acupuncture's reported benefits in so many disparate pathologic conditions

    Human factors and ergonomics design principles and guidelines : helping designers to be more creative

    Get PDF
    This is a pre-copyedited version of a contribution published in: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018. Advances in Intelligent Systems and Computing, vol 824, edited by Bagnara S., Tartaglia R., Albolino S., Alexander T., Fujita Y., published by Springer, Cham. The definitive authenticated version is available online via https://doi.org/10.1007/978-3-319-96071-5_17.The knowledge and application of Human Factors/Ergonomics (HFE) principles and guidelines can help designers to develop better products and services. However, they may also include design constraints that may affect designers’ creativity. Although both HFE principles and guidelines and creativity are considered essential in the design of products and services, the link between them is little researched. In this article a discussion is presented on the influence that HFE principles and guidelines can exert on the creativity of designers. It also presents case studies of HFE principles and guidelines and discusses how they can influence designers’ creativity. In addition, a set of recommendations is suggested to help designers apply ergonomic design principles and guidelines to stimulate creativity. It is concluded that HFE principles and guidelines can assist designers in creating safer and more efficient products and services and can also broaden their creative process and therefore the originality and appropriateness of products and services
    corecore