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SUHMARY 

The two-dimensional flow of a frictionless, adiabatic. 
perfect gas inside of a two-dimensional hyperbolic nozzle 
has been studied by numerical methods described in NAGA 
Technical Note No. 932. A series of solutions are presented 
which show an almost continuous transformation of known sub
sonic solutions to the known subsonic-supersonic solution. 
The words "almost continuous" are used becauee difficulties 
at the point where the shock waves touch the wall seem to 
prohibit continuous transformation from one type of solution 
to the next. 

Solutions with partial shocks, th::tt is, shock Waves 
that do not extend all the way across the nozzle, are very 
hard to obtain. rtesiduals of one part in one thousand can 
sometimes be eliminated only by introducing a shock. The 
type of solution obtained is, thus, very sensitiv e to small 
changes in nozzle form. 

The solutions are not single-valued, in general, in the 
relation of flo\'/ through the nozzle to pressure a t a given 
point in the nOZZle. In experiments, the flow might make 
small jumps as the type of flow pattern pass es through un
stable regions. 

A few schlieren photographs show that the actual flow 
through this nozzle differs considerably from the co mpu ted 
solutions. All the differences can be ascribed to the ef
fects of friction. Since the flow pattern in t he nOZZle is 
very critical in the slightly supersonic regions, the phenom
ena would be greatly altered if a boundary layer were included 
in the computation. 
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It has been known for some years that the perfect fluid 
the ory , p = f(P), was not adequate t n describe Rny o f the 
phenomena during transition fr om ~:holly subs oni c t~ subs0nic
supers o nic fl ow in a nozzle . For a one-di me nsi 0nRl theory, 
shock waves t oge ther with an o therwise per~ect fluid ~re 
enough. Fro~ this report it c a n be c oncluded thRt for the 
corresponding two-dimensi o nal problem a perfect fluid the nry 
supplemented with shock waves is still n o t enough. FDr ade
quate check with exp eriment , a the o ry must be b~sed ~unr- a 
fluid with friction (at least in regi nns near t~e ~alls ; in 
other regions fricti n n would have nn effect) . Solut i nns with 
this imperfect fluid invnlve a nr ohibitive a mo unt of I nbo r 
with present computing techniau e s . 

INTROD CTIO~ 

The flow of compressible fluids through nozzles has 
been the subject of investigation, both ex~eri mental Rnd 
theoretical , for more thRn a century. Nearly all the theo
retical work has been confined to cons~derRtions of the flow 
of perfect gases , generally neglecting friction and heat 
transfer, although some work covering the se latter effects 
has been attempted . Many of th e early re sult s are summe d up 
in reference 1. Like all comp licated physical n roble rns , the 
first theoretical attacks are made lith a n oversimplified 
physical picture . In the case of flo N through no zzles this 
simplification of flUid properties is used together with a 
simplified geometry . This a s sumes a one-di~ensional treat
ment of the flow in the sense that velocity and fluid prop
erties are assum ed to be uni ~ ue functions of a single v a ri
able which repres e nts distance alcng the nozzle axis, the 
Variation in nozzle cross section being taken n o r mal to this 
axis or in s ome other but e qually arbitrary ~ann er . The 
one- dimensional the o ry shows t ha t a si nle c onverging
diverging nozzle acts for l ow velocities like a conventional 
venturi meter; tha t is, the velocity increases and the pres
sure decreases to the mini~um section, f ollow ing ~hich the 
reverse occurs. As the exit pre ssure of the nozzle is lov 
ered , the velocity at the mini mu m sec t ion conti nues t o in
crease until a velocity equal to t he local s pee d of sound 
appears. 

In figure 1 t he pressure vRriation along an a r bit r Rr y 
nozzle is plotted, sh o~ ing the r eg ion for which the flow is 
si rri lar to a conv enti onal vent u ri mete r. With further dron 
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in nozzle exit pressure the velocity at the diverr,ing portion 
of the nozzle immediately following the throat increases 
above that of the speed of sound and continues thus to in
crease until interrupted by a shock wave. The standing shock 
Wave adjusts its position in such a way that the fluid after 
the shock wave can continue through the nozzle to come out at 
the specified exit pressure. If the exit of the nozzle is 
considered infinitely far away. the shock wave can be moved 
as far from the minimum section as desired. If the nozzle 
is short, the shock wave eventually arrives at its end, then 
passes out of the noz~le in a complex manner. The phenomena 
occurring outside of the nozzle will not be considered in 
this report. Consider what happens inside of the nozzle when 
a better geometric approximation to its form is assumed. 

The simplest improvement in assumption about the geom
etry of a nozzle is to consider a two-dimensional passage. 
that is, a passage like that drawn in figure I, except that 
it will not be assumed that velocity and fluid properties 
are constant across some arbitrarily drawn cross section. 
In a recent work (reference 2) a refinement of the one
dimensional treatment which is good in the neighborhood of 
the nozzle axis Was studied. No attempt was made to inves
tigate solutions when shock waves were present, and nO dis
cussion is given of the transition from subsonic to subsonic
supersonic type of flow. Some work in this direction has 
been attempted. (See references 3, 4, and 5.) In each case 
the differential equations describing the two-dimensional 
motion of a frictionless, adiabatic, irrotational perfect 
gas are written for the region where the Mach number equals 
I and solutions are sought in the form of power series. 
Very considerable labor is required to evaluate the coeffi
cients of the power series and, consequently, the power se
ries were terminated at approximately the eighth power term. 
G. I. Taylor (reference 3) has studied in this WRY the sym
metrical flow through a symmetrical passage. Thus, his so
lutions either are completely subsonic, that is. like the 
conventional venturi meter, or contain symmetrical super
sonic regions located in the minimum section at the wall. 
As a result of this work it was shown that this type of so
lution was limited in a way which depended upon the curvature 
of the wall. T. Meyer (reference 4) has studied the nons y m
metrical flow through a nozzle which passed through the speed 
of sound from subsonic to supersonic. The solutions of Taylor 
and Meyer are sketched in figure 2a and 2e, respectively. 
Neither of these workers gave any indication of how the flow 
could change from the one form to the other. The generaliza
tion of the results of the one-dimensional theory is not 
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immediate since a shock w~ve ~t subsonic velocity is impos
sible and the solutions of T~ylor do not include supersonic 
regions th~t extend comnletely ~cross the nassa~e . It is. 
there~ore , impossible to assume ~ith the one-dimensional 
theory that ~ minute shock ~npe~rs ~t V. = 1 (at minimum 
section) and then grows as the exit nresqure is dropned. An 
atte mnt to fill the g~P by the s~me nover series method has 

II ' 
been made by E. Gortler (reference 5), ~ho used po~er series 
which permitted nonsym metric Rl solutions Rnd sho red thRt so
lutions could be obt~i~ed ~hich s~tisfied the differential 
"" II enuat~on up to the e~ghth degree terms used . Gortler does 

not show, however, that solutions of this form h~ve ~ny di
rect bea ring upon ~hat actually happens since he does not 
show that his series , even if continued to infinity, could 
actually repr ese nt solutions to the differentiRI eouation. 
It is now to be expected on the b~sis of results of other in
vestiga tions , such as those of Ringleb (reference 6), that 
beyond the limit solution of Taylor there only exist solu
tions '"ith cusps ~~d ov e rlapping streamlines ~hich~ of course, 
are of no physica l signific~nce. The results of Gdrtler's 
work , however, are suggestive in that the form of the const~nt 
velocity lines obtRined by him indicates that the eighth de
gree equations are attempting to give a compression shock, 
but , of course , are unable to do so . It is easily conjec
tured, therefore, that the tr~nsition from the symmetrical 
type of flow of T~ylor to the nonsymmetrical flow of Meyer 
takes place some h~t as indicated in figures 2b, 2c, and 2d. 
A emaIl com n ression shock would be imagined as starting at 
the wall in Taylor's solution at the down str eam point where 
the constant velocity M = 1 line arrives at the ~all . It 
then g r ows in magnitude and extends to~~rd the center of the 
passage . Eventually the shocks from onnosite w~lls arrive 
at the center of the passage , combine and move ~s a single 
shock on downstream similar to the one-dirrensional theory. 
This picture, as it turns out , is ~~nrozim~tely correct, al
though certain modific~tions have still to be considered in 
future work . 

This investigation, conducted at Harv~rd University, 
las snonsored by and conducted ~ith the financial assistance 
of the National Advisory Com mitt ee for Aeronautics. 

The author wishes to acknowledge indebtedness to Dr. 
Andrew Vazsonyi who carried out all the detailed comput at ions 
and sup~lied many ideas during the hours of discussion of 
v a rious fine noints of t h e comnutations and the fluid mechan
ics . 
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SYMB OL5 

a accustic velocity 

D half nozzle throat dimension 

M Mach number 

p pressure 

Pr Prandtl number 

velocity (components u, v) 

Q residual 

R,r radius of curvature of streamline 

w complex-velocity potential 

x,y coordinat~s in physical plane 

z complex coordinate in physical plane 

a. 

y 

€ 

angle bet~een ~ and n lines 

isentropic exponent 

lattice spacing in computation 

fraction of lattice s9Bcing frem net point to sh~ ~ ~ 
Wave 

5 

deflection angle of streamline produced by an oblique 
shock 

~ stream function 

n stream function for incompressible fluid 

~ velocity potential for incompressible fluid 

8W oblique shock angle 

p mass density 
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w 

Su b s c ri p t s 

a 

b 

cr 

i 

ra.te of rotation 

dimensionless rotation 

condition afteT a shock wave 

condition before a shock wave 

critical condition 

incolOpressible 

denote differentiation in the corresponding 
direction 

o stagnation condition 

RESULTS OF RELAXATIOP SOLUTION OF THE FLOW 

THROUGH A HYPERBOLIC NOZZLE 

6 

Reference 7 shows how tu apply the relaxation method to 
the solution of compressible fluid flow problems in two di
mension s . A simple channel was chosen for first investiga
tion. so that attention could be concentrated on the diffi
culties of the compressible fluids part of the problem with
out being bothered by difficult geometry. As a consequence, 
the channel formed by two hyperbolas was chosen. The complex 
potential function for this nozzle is 

,-, = sinh - 1 Z 

where 

z = x + i Y 

~ velocity potential 

n stream function 
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The physical shape of this nozzle in the x,y plane is easily 
computed from 

x = sinh ~ cos ~} 
y = cosh ~ sin ~ 

while the velocity qi of an incompressible fluid flowing 
through this passage is given by 

_L = cosh 2~ + cos 2~ 
qi 2 ;3 

Figure 3 shows the ~ and ~ lines in this nozzle. These 
lines are the coordinate system used in the compressible 
flow solutions. Figure 4 shows the flow of an incompressi
ble fluid through this passa e e . This solution is to be com
pared with later solutions for the flow of compressible 
fluid at high velocity. All the remaining figures (5 
through 30) show various facts about the flow of a gas 
through this nozzle while table I summarizes various numer
ical details. It should be observed that t he flow is essen
tially that of a conventional venturi meter for all cases in 
which the Mach number at the center of the minimum section 
is M ~ 0 . 812. This is the limiting case essentially as 
would have b een described by the solutions of Taylor. By 
graphical interpolation (fig . 9) it 1/1as found that 14 = 1 
first appears at the wall for a center Mach number of 0.772. 
The app ea rance of M = 1 at the nozzle wall is in no way 
critical for the flow through the nozzle . It is of interest 
only because it formerly was , and occasionally still is, er
roneously associated with some critical aspect of the flow. 
Shock waves do not, and indeed could not, occur when only 
one pOint has reached the local sonic velocity. 

The essentially subsonic flows of figures 4 through 8 
are equivalent to the results recently published by Southwell, 
Greene, and Fox (references 8 and 9) ex~ept for a different 
nozzle shape. The work of these two papers and the present 
report were carried out entirely independently and the extent 
to which the results agree is gratifying . 

Before the solutions with shocks are discussed, it 
should be observed that the computer has a choice of the 
type of shock wave he wishes to consider. Should shock 
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TABLE I 

THE MACH NUMBER AT VARI OUS POINTS IN THE NOZZLE 

M M M M 

Center of Center line 
Wall at 

X 
0 . 93 Fig- nozzle at is" = x = 0 

ure t hroat 
(~= 0 . 6 " i (~= 0 . 0 ~ 

Maxi mum 
in 

noz zle 
Remarks 

(~= '1) = 0 ) '1) = 0 .0) '1)= 0 . 6) 

~4~-0--~--0 --~--0~--+ l' 
5 . 600 

6 . 69 2 

.772 

7 .793 

8 . 812 

10 . 832 

11 . 875 

I 
I 

12 

13 
C\l 
et:l 
m 14 
• 

0 

~---~+-16 \ 

. 46 .742 

. 505 . 875 

1. 000 

. 540 1. 035 

. 555 1.085 
--- ---- -, __ ---.A. ..... ---, 

. 556 1. 133 1.143 

. 563 1. 140 1. 187 

. 575 

I i . 602 

1. 398 

1.443 

I .,ji 

. 625 
If) 

rl 
• 1. 525 

rl 

. 642 1. 63 

! 

Subsonic 

J 
By interpolation 
--------------~ 

Symmetrical I 
SUbsonic - supersoniC/ I 

/1\ , 

'

I I I 

Partia l shocks 
I 

I \~ lr------, 
i I Complete shocks I 

_._--_. __ .. 
1.455 w 

I J I --00-'-1 (C~mplete eubsonic 
j'\supersonic solution 

I 
I , 
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Waves be normal or oblique? At the wall the immediate thought 
is to use only normal shocks since, then, the direction of 
the stream is unaltered on crossing the shock and hence the 
stream continues along the wall. As will be discussed later, 
a streamline curvature jump occurs across the shock which re
quires a curvature singularity in the subsonic flow follow
ing the shock. This singularity arises naturally during the 
course of the relaxation solution. If an oblique shook had 
been used, solutions could have been obtained which would 
have included a singularity, in some cases a stagnation pOint, 
downstream from the shock wave. In this report it was de
cided to use only normal shocks at the wall. In an actual 
nozzle, the boundary layer would alter the shock boundary 
condition considerably. 

Figures 10 through 12 show solutions with partial shocks, 
that is, shocks that do not extend all the way across the 
nozzle. Figure 12 is included in this category in spite of 
the fact that the shock is drawn to extend complet~ly across 
the nozzle. This case is a solution for which the shock 
Waves from oppsite walls have just combined. The shock 

• waves are here tangent to the M = I line at the center 
line of the channel. Thus, the shock waves become infini
tesimal in magnitude. In the numerical work from which this 
solution was drawn, much higher accuracy would have been 
needed to distinguish between the solution as drawn and the 
solutions obtained, by merely erasing a small section of the 
shock and M = 1 line at the center of the nozzle. In 
other words, with a stream function of the order of 20,000 
at the wall compared to zero at the center line there is not 
sufficient accuracy to distinguish precisely when the shock 
waves first combine. In figures 12 through 16 the shock 
wave is gradually moving down the nozzle essentially as pre
dicted by the one-dimensional theory. 

The first fact to be observed about these solutions 
with shock waves is the fact that they are not normal but 
curve upstream toward the center of the passage. In the 
course of obtaining solutions normal shock waves were in
serted in the passage in whatw ns considered the proper loca
tion. During the course of solution these shock Waves had 
to be moved and made oblique by the processes described in 
appendix I in order to eliminate the residuals. As a first 
approximation it might be Observed that the shock waves must 
curve SO that the rate of change of entropy normal to the 
streamlines gives rise to a sufficient magnitude of rotation 
term of the differential equation to replace the density 
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terms of the differential equation which decrease discontin
uously across the shock wave . The photograph (fi g . 17) 
taken in a high-speed wind tunnel at Harvard University il
lustrates such a shock. 

In figure 17 there is also shown another photograph at 
the "same" condition on a different day taken in 4 micro
seconds with a schlieren system. The phenomenon of many 
shocks is a nonsteady one probably associated with the turbu
lence of the air stream. Small "turbulence" pressure waves 
unable to pass through the throat accumulate there until 
they become a shock wave of sufficient magnitude to p~ss 
through. It should not be inferred that the partial shocks 
of the solutions are of no importance because they were not 
found in these nozzle experiments. For an airfoil in free 
flight only partial shocks are possible. After complete 
shocks are formed, agreement between wind-tunnel and free
flight conditions could not be expected . 

Everything in these solutions appears to follow essen
tially the conjectured progress of development and growth of 
the shock Waves. (See fig. 2.) That this is not quite cor
rect can be seen by examining figures 8 and 10 mOre closely. 
It will be observed that the shock wave seems to arise (fig. 
10) not at the pOint where the M = 1 line touches the wall 
(fig. 8) but somewhat upstream of this point, and, in fact, 
makes a sudden appearance (not starting with zero length 
near the wall). This can also be seen from the dotted line 
in figures 20 and 21. The changes that take place as the 
flow conditions are changed are shown again in fi gures 18 
through 21, where the variation of Mach number and pressure 
along the center line and along the wall are shown. The 
variation in Mach number near the wall is shown in fi gure 10. 
It will be observed that the Mach number and pressure dis
tributions along the wall proceed smoothly up to a shock 
wave. They then, of course. must change abruptly to the sub
sonic value appropriate to a shock wave at the correct angle 
(in this case normal) for the Mach number existing ahead of 
the shock. The pressure and Mach number do not vary smoothly 
from this value. however, but are shown with a discontinuous 
change On the subsonic side of the shock. For the solutions 
presented in this report, the Mach numbers at all net pOints 
along the wall On the subsonic side of the shock wave fell 
on a smooth curve which when extrapolated gave the disconti
nuities shown. For the row of net pOinte adjacent to the 
wall no peculiar phenomena were required to get a solution. 
Later work, not reported here, has produced cases in which 
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the Mach number ri~es very steeply from the value after the 
shock and then turns smoothly into the descending Mach num
ber curve. Thus it appears that the curves of this report 
should show a steep rise rather than the discontinuities. 

Although the preci~e nature of the singularity at the 
wall in the subsonic flow following a shock has not been de
termined, there is no difficulty in finding the qualitative 
explanation of this phenomenon. Consider the supersonic 
flow of a compressible fluid along the convex side of a wall 
of given radius of curvature. In order that the fluid fol
low the wall there must be adjacent to the wall a normal 
component of pressure gradient such that the pressure in
creases away from the wall. This pressure gradient 1s re
quired to turn the velocity vector as the fluid moves along 
the curved wall. If, now, a shock wave stands across this 
flow and reaches the curved wall, the stream ahead of the 
shock is left unaltered. The stream immediately behind the 
wave is determined by the shock wave conditions. The perti
nent condition for the present considerations is the fact 
that, except for modifications caused by the entropy change, 
the lower the pressure ~he higher the velocity) before a 
normal shock the higher the pressure immediately following 
the shock. Since the pressure before the shock increases 
away from the wall, the pressure after the shock will de
crease away from the wall. lience the streamlines immediately 
behind the shock must be curved away from the wall. 

For the solutions presented in this report, the fluid 
was required to follow the wall. The streamlines behind the 
shock must, therefore, reverse their curvature in such a way 
that the inflection paint approaches the shock wave as one 
moves closer to the nozzle wall; while at the wall, the in
flection pOint coincides with the shock wave. In a qualita
tive sense, therefore, the subsonic flow behind the shock 
wave 1s similar to the isentropic flow of a fluid along a 
wall with a discontinuity of radius of curvature. The flow 
of an incompressible perfect fluid along a wnll with a dis
continuity of radius of curvature has been studied (reference 
10) and leads to an infinite rate of change of velocity along 
the wall. Thus there is a singularity in the flow of an in
compressible fluid along a wall with a jump in curvature of 
the same type as that found in the subsonic flow following a 
shock wave. 

In the explanation of the wall singularity in the sub
sonic flow following a shock wave, it Was noted that the 
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entropy jumu through a shock would cause some rno dific~tion 

of the explanation. On figure 22 the ratio of t h e radi u s of 
curvature of a streamline before and after a norma} sh 0 ck is 
shown as a function of the Mach number before the shock, 
taking into account the changes of entropy ~s the y ~ctually 
occur. Only at one Mach number is it uossible for the stream 
to continue ~long a wall (with continuous curvat u r e) wittout 
a singularity, and that is at a Mach number given by equation 
(22), which for air with Y = 1 . 40 is at M = 1.66. 

An infinite rate of rise of ~ressure along a ny stream
line adjacent to the wall is not nos sible becau s e of the 
second law of thermodynamics which urevents an expansion 
shock. By riting the equation of continuity, mome ntum, ar.d 
energy for a stream tube element enclosing a sta nding wave, 
there is found to be one and only one percissible subsonic 
state for each initial state , provided it is permissible to 
use an element the length of which in the direction of the 
streamlines is of higher order than its width. To find out 
what Can happen ~~ the wall, it is necessary to use a stream 
tube element with the wall as one si d e and with a width of 
the same (or higher) order as the length . If such an element 
is used, the effects on its sides are of the same order a s 
the effects on its ends, and, consequently, the conc l usions 
about unique state after the wave do not follow. 

The ranid rise in Mach number along the wall after a 
shock wave varies in severity with both the w~ll curvature 
and the initial Mach number . In figure 23 the ratio of the 
Mach numbers before and after this rapid ri~e is plott e d 
against the M~ch number before the shock. The r e is also 
plotted the ratio of Mach numb e rs across a nor mal shock. It 
apuears that for the present nozzle the rapid rise of Mach 
number following a shock caus e d by the curvature sin~ulRrity 
would just co mp ensate for the Mach numb e r drop ttro'gh the 
shock itself at M = 1.075. Thus, it appears that if a shock 
solution had be e n sought at a lower Mach nu mb pr than 1.075. 
there would have been a rapid rise in speed along the wall 
which would have left a supersonic stream moving fast e r than 
the original stream. The present inv e stigatio n needs ex t e n
sion at this point if questions c o nc e rning t he first appear
ance of a shock wave are to be answer e d. 

It thus ap p ears that this report takes a steu i n t he 
direction of clarifying the so-called critical conditions 
associat e d with the first appearance of shock waves but falls 
far short of an adequate explanation. 
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It appears that not only is the perfect fluid without 
shocks an insufficient mathematical theory to cover the prac
tical phenomena arising in connection with the flow of com
pressible fluids but that even the extended theory which in
cludes compreseion shock discontinuities, as in this report, 
is not adequate to describe the facts properly. It is prob
able that a sufficiently general mathematical theory ( a nd 
presumably a fluid with friction would provide such) could 
give smooth transitions from one type of solution to another. 
There is, however, no reason to aSsume that such solutions 
would be either unique or stable. 

It may be argued that the sudden jump from one type of 
solution to another, as required by the present theory, does 
not contradict experimental observations. True. However, 
consider the case in which Taylor's limiting solution occurs 
for a passage in which the velocity at no pOint has yet risen 
to as high a value ae M = 1.07. In this case nO shock Waves 
can arise at all if a discontinuous increase of velocity at 
the wall is considered objectionableo The presp.nt theory 
(perfect fluid with shocks) is not adequate to cover all 
cases but must be extended. 

Figures 19 and 21 should be compared with fi e ure 1. It 
is seen that the one-dimensional theory has been modified con
siderably and has been modified in different wa ys for the 
nozzle axis and for the nozzle wall. 

The flow through the nozzle is plotted again~t pressure 
at various points in figures 24, 25, and 26. The re a son for 
the differences in appearance of these figures can be under
stood by comparison with figures 4 through 16, 19, and 21. 
The importance of these differences follows if it is con
sidered that nOZZle experiments are usually performed by reg
ulating the pressure in a large tank into which the g as dis
charges or by regulating the pressure at a small hole located 
somewhere in the nozzle wall. It is quite obvious that there 
is no guarantee that a Single-valued relation exists between 
the pressure at a given point and the flow through the nozzle. 
It is quite possible for a decrease in pressure to correspond 
to a decrease in flow rather than the usual increase in flow. 
In particular, a pressure hole drilled at certain points in a 
nozzle may read a given value for as many as three different 
flows. It may well be that some of these are more stable 
than others, and therefore experimental difficulties and 
anomalies might well arise in nozzle experiments. A few ad
ditional results of interest are shown in figures 27 and 28. 
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In figure 27 the distribution of rotation i~ the nozzle is 
shown for the solution of figure 13 . This rotation is far 

14 

from negligible , particularly as the shock wave moves down
stream and becomes stronger. This rotation is such that it 
will require the stream to separate from the wall sufficient
ly far downstream from the nozzle throat. For the perfect 
fluid considered here, the rotation once produced cannot be 
destroyed . Thus far downstream from the nozzle throat where 
the velocity (without rotation) would approRch zero, it can
not now do so since the rotation does not decrease. The stream 
function is to be considered as a surface plotted over the 
region of space through which the fluid flows . This surface 
will have the same shape as a soap film stretched over a 
hole the shape of the domain and loaded with a pressure pro
portional to the fluid rot~tion at the corresponding point. 
If such a film were made for the present nozzle, the soap 
film would be steepest at the throat and become flatter and 
flatter on receding from the throat either upstream or down
stream . Thus the fluid velocity would be F-reatest at the 
throat and approach zero at infinity. If there is rotation, 
however, the soap film would ~e loaded. Since the rotation 
cannot decrease, the loadin~ does not decrease away from the 
throat and hence the soap film , instead of becomin~ flatter 
and flatter, is bul~ed by the lop.d . If the slo1')e of the 
soap film is again internreted as fluid velocit., the fluid 
will be moving away from the throat on one side of the bul~e 
and toward the throat on the other. there the bul~e first 
starts, there would be the separation point in the nozzle, 
The consequences of this separation were not investigated. 
While this analogy is strictly correct for incompressible 
fluids only, it sho's clearly the proble:n involyed. 

In figure 28 the variation in entropy behind the shock 
waves is shown for all of the solutions ith shocks, Since 
entropy is a function of the stream function only for a par
ticular solution, such a composite figure is possible (s~ch 
a figure is not possible for the rotation which is a func
tion of pressure as well as entropy ~radie~t). By a refer
ence to the computation curves of the earlier report (refer
ence 7), it is obvious that this change in entropy causes a 
very considerable alteration of the properties of the fluid. 
It is for this reason that the pairs of fi~ures, 18, 19, ~_ nd 
20, 21, show considerable differences . (For constant entropy, 
p = f(M) , and these figures would differ only by an ordin~te 
scale chR.nge . ) 

In figure 29 the shock waves for All the solutions are 
assembled for comparison. It is clear ho~ the shock waves 
arise near the wall , grow and move downstreac . 
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EFFEOTS OF FRICTION 

Figure 30 shows a series of photographs of the flow 
through a hyperbolic nozzle taken in a high-speed wind tun
nel at Harvard University. It is not surprising that this 
flow in no case looks like the predicted flow o The rela
tively small radius of curvature at the throat of the noz
zle investigated makes it impossible for a re a l gas with 
friction to follow the walls. Since for low velocity a jet 
separating from both walls is not very stable, the stream 
usually separated from One wall and passed along the other 
(flow nonsymmetrical about axis of nozzle). As soon as 
shock waves of reasonable magnitude appeared, the stream 
separated from both sides and passed out as a free jet. 
Thus, there will have to be included in any complete inves
tigation the effects of friction on the modification of the 
effective boundary shape by the boundary l a yer, which modi
fication will eventually have to include flow separation 
which at the present cannot be satisfactorily predicted; and 
also the boundary layer will introduce very co n side r able 
changes in the partial shock waves which appear and conse
Quently will greatly affect the pressure and velocity dis
tributions along the wall near the throat of the nozzle. 
Such friction effects will, it is reasonably certain, always 
lead to flow separation at least locally between the end of 
a shock wave and the ,.,all. Two other effects which might be 
worthy of note, although not coming directly under the head
ing of friction, are (1) moisture in the air and (2) heat 
transfer. It is quite probable that the first shock wave 
encountered by the stream in the photographs of figure 30 is 
closely connected with the moisture in the atmosphere as 
changes in form of this "throat shock" occur with ch anges of 
atmospheric moisture. 

The consideration that the nozzle is not thermally con
nected to any source or sink ,of heat (generally not true) is 
not a guarantee that no heat transfer to the air stream 
takes place. Since the temperature in the boundary layer of 
a gas with Prandtl number other than Pr = 1 would not be 
constant, the nozzle to be in equilibrium with the gas would 
have a varying wall temperature along the nozzle length. 
For a metal nozzle this would necessitate a considerable 
flow of heat from one portion of the nozzle to another and 
hence from one portion of the gas stream to another. It is 
not likely that this effect is ever very large but it should 
not be forgotten completely since, in some cases, it might 
be significant. 
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CONCLUSIONS 

The two-dimensional flow of a frictionless, adiabatic, 
perfect gas through a hyperbolic nozzle follows very closely 
that to be expected from the investigations of Taylor (ref
erence 3) as long as no shock waves appear. A symmetrical 
supersonic region appears near the wall at the throat for a 
sufficiently high flow through the nozzle. There is a great
est flow abOve which this type of flow no longer exists. 

In spite of attempts to determine exactly what it Was 
that caused the symmetrical solutions to cease existing it 
could only be noted that as the maximum velocity got higher, 
the residuals (lOcal fluid rotation) became more and more 
difficult to dispose of. When it became absolutely impossi
ble to dispose of the rotation (a state of affairs that is 
sure to remain uncertain in a finite computation effort), 
shock Waves arise which greatly alter conditions and inci
dently produce some rotation, thus permittin g a solution to 
be found. 

The solutions presented in this report constitute a 
!tory of the growth of the flow pattern inside of a nozzle 
from zero velocity to the highest attainable velocity. This 
flow picture is a good first app rox imation to what really 
happens in a tWO-dimensional nozzle as long as the real flow 
through the nozzle is free from flow s ep a ration. Further 
accuracy of prediction of what happens in a nozzle can be 
attained only by using a more complicated fl u id conti nuum 
which at least has the additional property of friction. 

Critical (greatest) flow through a nozzle in n ot reached 
until the shock wave first extends a ll the way acr os s the 
nozzle passage. During the growth of the par tia l sh ocks, 
however, the flow changes only I p~rcent. Th8 gre ~ t est flow 
is 0.7 pe ~ cent less than the theoreti cal maxi~~ m t hat would 
be obtai ne d if the M = I line extbnded acro s s the nozzle 
at the throat. 

Harvard University, 
Oambridge. Mass., February 10, 1945. 
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APPENDIX I 

SOLUTIONS WITH COMPRESSION SHOCKS 

In a previous report (reference 7) a brief description 
was given of the method of fitting compression shocks into 
the numerical solution. This method has been further per
fected and is presented here. 

In the transformed (~,n) plane, the streamlines, ~ = 
constant, almost coincide with the n constant lines when 
the shock waves are nearly normal. This circumstance greatly 
simplifies the resulting formulas, so that the derivation 
will be carried out with these assumptions. Figure 31 shows 
a streamline crossing a shock wave from the supersonic, b, 
region to the subsonic, a, regi6n. The obliquity, Bw, of a 

shock is given by computation curve 5 of reference 7 in terms 
of the Mach number of the approaching stream and the deflec
tion angle ~ . This deflection angle can be computed from 
the residuals at points I and 2 as follows. The streamline 
makes an angle ~ with the ~ axis given by 

= (on) ~~ 
t an ~ IT ~ = - ~n (4) 

Thus 

~ = Cl.a - ~b 

where the last form is obtained by neglecting the very small 
difference between ~n and ~n . 

b a 

Now, observe that if the shock wave had not been present 
there would have been a "supersonic" value of W:ab at point 

2 which would have made the residual at pOint 1 equal to 
zero, If, however, the value of ~2 from the subsonic so-

a 
lution is used in computing the residual ~l' it will have 
the value 

(6 ) 
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or 
\11 2 - '.jJ - Q. 1 

\IIeb 
1 = 

5 

Similarly 
\II - \II + Q.,a 2 1 

\lie = 
a 8 

(8 ) 

Substitute these into equation (5) 

cp = ( 9 ) 

Another rel a tion to be satisfied by the shoc k Wave is 
obtained by observing that the value of \II d oes n ot c h ange 
across the shock. Thus 

from which 

E: = 

Ag a i nus in g t he r e 1 a t ion s (7) and (8) 

E: = 
Q. 1 + Q.:a 

The shock wave divides the distance between n e t p Oi nts 
inversely as t h e residu a ls. 

Finally. a s h ock wa ve a s tr e ated i n thi s rep ort. is a s
sumed to be continuous. not branched, and ending e i t h er at 
the Wall or where M = 1. 

The technique of solution. then. is to attempt to eli m
inate all residuals. Failing this. an attemp t is made t o ac
cumulate all residuals along SOme line among t h e p oints. In 
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the present work it was alway~ fairly obvious where the shock 
would be by observing the trend of solutions. Furthermore. 
by observing the sign of the rotation term that is needed 
after the shock to balance the decrease of the density term. 
it was fairly obvious which way to bend the shock. Hence. 
early in the course of solution, it was possible to sketch in 
a likely shock wave and ~ith equations (9) and (12) to com
pute the required residuals at pOints on both sides. 

Now as the solution progresses, and residuals are moved 
to the tentative shock position, the shock Wave angle and 
position (by continuity of shock line these are not independ
ent) are gradually altered . Specific instructions at this 
point cannot be given but it is worth observing that for any 
initial Mach number there is a maximum possible deflection 
angle and that for shock waves in a stream near M = I, the 
maximum permissible deflection is very small. Hence care 
must be exercised during solution to avoid exceeding the maX
imum permissible sum of residues as given by equation (9) 
with the maximum ~. 

The formulas of this appendix were derived after making 
assumptions about the streamlines and shock ' .... aves (tan aa ~ aa. 

tan ab ~ ab). As a solution nears completion, these assump

tions can be checked. If they are not met with sufficient 
accuracy . more elaborate formulas must be derived using es
sentially the same methods as the above-mentioned. 

APPENDIX II 

THE STREAMLINE CURVATURE JUMP ACROSS NORMAL SHOOK WAVES 

Let a streamline pass through a shock wave as in figure 
32, and suffer a jump in radius of curvature from Rb to 

Ra. Assume the stream approaching the shock wave is a per-
fect gas with uniform stagnation state. 
will then be irrotational. 

The approach flow 

The momentum condition applied normal to the streamlines 
gives 

= or r 
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for each side of the shock wave. Hence, by division, 

where the subscript s denotes that the derivative is to be 
evaluated along the shock wave. 

The change in pressure across the shock is given by the 
momentum equation as 

in view of the continuity condition p q - P Q 
b b - a -a' 

Before eliminating Pa between equations (14) and (15), 

it is well to note Prandtl's relation 

y - 1 2 

Y + 1 qb 
(16) 

where is a constant because of the assumed constant 

stagnation state of the approach stream. 

Now by equation (14) 

where the subscript s is dropped, as the derivative now de
pends only upon the approach Mach number. In fact Rb/ Ra 

depends only upon the approach Mach number. 

Carry out the differentiation indicated in e quation (19) 

and note that :a 
a = 

op 
op and M = i There results 

a 
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(18) 

The rem a ining derivative term is found to have the value -2 
by using the momentum e~ua tion along the str eamlin e s 

Qdq+dpP=O (19) 

Thus 

Bye 1 i min a tin g q c r :3 fro m e qua t ion s ( 1 6) an d (2 0), the rei s 
obtained finally 

Rb 
:3 

[M:3 
'I( 

3 J 1-1 + 
(21 ) = -Ra 1 + Y - 1 M:3 2 

2 

The ratio of curvature radii v a ries from -1 at M = 1 • 

through 0 at M =~Y ; 3 (= 1.482 for 'I( = 1.40), through 

+1 at M =1.66 for '1(=1,40, and--;>CXl as M----3>co. The 
curve is shown as computation curve (fig . 22). The Ma ch 
numb e r at which no cha ng e in cu rvature Occurs across a shock 
wave is given oy 
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APPENDIX III 

ADDITIONAL REMARKS ON THE NUMERICAL SOLUTION 

OF SUPERSONIC REGIONS 

There was no definite procedure specified in the previ
ous report (reference 7) by which solutions in supersonic 
regions could be obtained. It is still impossible to write 
any rigid instructions that are sure to work, This is a 
general difficulty as Fox and Southwell (reference 9) state 
that their iteration method diverged after reaching a minimum 
value. 

The residuals in the solutions could be reduced consid
erably by the following procedure: 

1 . Obtain a rough solution using q. constant as ex
plained in reference 7 . 

2 . Move residuals around somewhat in an attempt to im
prove the solution. During this process, draw q. versus 
n curves to see that they are smooth. This is especially 
important for the evaluation of the properties at the nozzle 
wall. 

3. Use a finer net making a first estimate of net val
ues by using a q. variation as already found for the coarse 
net. 

Some trouble may be experienced in interpolating to a 
finer net in regions were M ~ 1 . The variation of qi from 

point to pOint may be such that. on interpolating, the ~ 
gradient exceeds the maximum possible value: or if the gradi
ent is held down to its maximum permissible value, then the 
resulting streamline with the fine net may differ considera
bly from the corresponding streamline on the COarse net. 
This difficulty could be avoided by using at each net point 
not the qi for that point , but an average qi for that 

pOint and two pOints on each side of it on the next finer 
net. Using an average from a still finer net was found to 
offer no additional advantage. The five qi values (one at 

desired point and two on each side on finer net) Were weighted 
I, 2, 2, 2, 1 which gives approximately the area in the 
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region f8 on each side of the desired pOint. A few other 
averages were tried without noticeable benefit. In partic
ular, since the mass flow is almost constant near M = 1, 
it can be shown that a harmonic mean should be taken bu t the 
resulting "effective" qi Was not appreciably different 
from the average as above-meutioned. 
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