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SUMMARY

The two-dimensional flow of a frictionless, adiabatic,
perfect gas inside of a two-dimensional hyperbolic nozzle
has been studied by numerical methods described in NACA
Technical Note No. 932, A series of solutions are presented
which show an almost continuous transformation of known sub-
sonic solutions to the known subsonic-supersonic solution,
The words "almost continuous" are used because difficulties
at the point where the shock waves touch the wall seem to
prohibit continuous transformation from one type of solution
to the next.

Solutions with partial shocks, that is, shock waves
that do not extend all the way across the nozzle, zre very
hard to obtain. Residuals of one part in one thousand can
sometimes be eliminated only by introducing a shock. The
type of solution obtained is, thus, very sensitive to small
chaznges in nozzle form,

The solutions are not single~valued, in general, in the
relation of flow through the nozzle to pressure at a given
point in the nozzle. In experiments, the flow might make
small jumps as the type of flow pattern passes through un-
stable regions,

A few schlieren photographs show that the actual flow
through this nozzle differs considerably from the computed
solutions., All the differences can be ascribed to the ef-
fects of friction. Since the flow pattern in the nozzle is
very critical in the slightly supersonic regions, the phenom~
ena would be greatly altered if a boundary layer were included
in the computation.
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It has been known for somé years that the perfect fluid
theory, » = f(P), was not adequate to describe any of the
phenomena during transition from wholly subsonic to subsonic-
supersonic flow in a nozzle. TFor a one-dimensinnal theory,
shock waves together with an otherwise perfect fluid are
enough., From this report it can be concluded that for the
corresponding two-dimensional problem a perfect fluid theonry
supplemented with shock waves is still not enough. For ade-
quate check with experiment, a theory must be based uvorn a
fluid with friction (at least in regisns near the walls; in
other regions frictinn would have nn effect). Solutinns with
this imperfect fluid invnlve a mrohibitive amount of labor
with present computing techniaoues,

INTRODUCTION

The flow of compressidle fluids through nozzles has
been the subject of investigation, both exmerimental and
theoretical, for more than a century., YNearly all the theo-
retical work has been confined to considerations of the flow
of perfect gases, generally neglecting friction and heat
transfer, although some work covering these latter effects
has been attempted. Many of the early results are summed up
in reference 1. Like all complicated physical vroblems, the
first theoretical attacks are made with an oversimplified
physical picture. In the case of flow through nozzles this
simplification of fluid properties is used together with a
simplified geometry, This assumes a one-dimensional treat-
ment of the flow in the sense that velocity and fluid pProp-
erties are assumed to be unicue functions of a single vari-
able which represents distance along the nozzle axis, the
variation in nozzle cross section being taken normal to this
axis or in some other but ecqually arbitrary manner. Tke
one~dimensional theory shows that a simple converging-
diverging nozzle acts for low velocities like a conventional
venturi meter; that is, the velocity increases and the pres-—-
sure decreases to the minimum section, following which the
reverse occurs. As the exit pressure of the nozzle is low-
ered, the velocity at the minimum section continues to in-
crease until a velocity equal to the local speed of sound
appears.

In figure 1 the pressure variation along an arbitrary
nozzle is plotted, showing the region for which the flow is
similar to a conventional venturi meter. With further droon
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in nozzle exit pressure the velocity at the diverging portion
of the nozzle immediately following the throat increases
above that of the speed of sound and continues thus to in-
crease until interrupted by a shock wave. The standing shock
wave adjusts 1ts position in such a way that the fluid after
the shock wave can continue through the nozzle to come out at
the specified exit pressure. If the exit of the nozzle is
considered infinitely far away, the shock wave can be moved
as far from the minimum section as desired., If the nozzle

is short, the shock wave eventually arrives at its end, then
Passes out of the nozzle in a complex manner. The phenomena
occurring outside of the nozzle will not be considered in
this report. Consider what happens inside of the nozzle when
a better geometric approximation to its form is assumed.

The simplest improvement in assumption about the geom-
etry of a nozzle is to consider a two-dimensional passage,
that is, a passage like that drawn in figure 1, except that
it will not be assumed that velocity and fluid properties
are constant across some arbitrarily drawn cross section.

In a recent work (reference 2) a refinement of the one-
v dimensional treatment which is good in the neighborhood of
the nozzle axis was studied, No attempt was made to inves-
tigate solutions when shock waves were present, and no dis=-
cussion is given of the transition from subsonic to subsonic-
supersonic type of flow, Some work in this directicn has
been attempted. (See references 3, 4, and 5.) In each case
the differential equations describing the two-dimensional
motion of a frictionless, adiabatie, irrotational perfect
gas are written for the region where the Mach number equals
1l and solutions are sought in the form of power series,
Very considerable labor is required to evaluate the coeffi-
cients of the power series and, consequently, the power se-
ries were terminated at approximately the eighth power term.,
G. I. Taylor (reference &) has studied in this way the sym-
metrical flow through a symmetrical passage. Thus, his so-
lutions either are completely subsonic, that is, like the
conventional venturi meter, or contain symmetrical super-
sonic regions located in the minimum section at the wall,
As a result of this work it was shown that this type of so-
lution was limited in a way which depended upon the curvature
of the wall, T, Meyer (reference 4) has studied the nonsym-
metrical flow through a nozzle which passed through the speed
of sound from subsonic to supersonic. The solutions of Taylor
and Meyer are sketched in figure 2a and 2e, respectively.
Neither of these workers gave any indication of how the flow
could change from the one form to the other. The generaliza-
tion of the results of the one-dimensional theory is not

R
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immediate since a shock wave at subsonic velocity is impos-
sible and the solutions of Taylor do not include supersonic
regions that extend completely across the vassage. P -
therefore, impossible to assume with the one-dimensional
theary that a minute shock appears at M =1 (at minimum
section) and then grovs as the exit pressure is dropved. An
attempt to fill the gap by the same pover series method has
been made by EH. Gortler (reference 5), who used pover series
which permitted nonsymmetrical solutions and showed that so-
lutions could be obtained which satisfied the d%fferential
eduation up to the eighth degree terms used. Gortler does
not show, however, that solutions of this form have any di-
rect bearing upon vhat actually happens since he does not
show that his series, even if continued to infinity, could
actually represent solutions to the differential eauation.
It is now to be expected on the basis of results of other in-
vestigations, such as those of Ringleb (reference 6), that
beyond the limit solution of Taylor there only exist solu-
tions vith cusps and overlapping streamlines which, of course,
are of ne physical significance. The results of Gortler's
work, however, are suggestive in that the form of the constant
velocity lines obtained by him indicates that the eighth de-
gree equations are attempting to give a compression shock,
but, of course, are unable to do so. It is easily conjec-
tured, therefore, that the transition from the symmetrical
type of flow of Taylor to the nonsymmetrical flow of Meyer
takes place somevwhat as indicated in figures 2b, 2¢, and 24.
A small compression shock would be imagined as starting at
the wall in Tayler's solution at the down stream point where
the constant velocity M = 1 1line arrives at the wall. 1t
then grows in magnitude and extends toward the center of the
Passage. Eventually the shocks from onvosite walls arrive
at the center of the passage, combine and move as a single
shock oen downstream similar to the one-dirensional theory.
This picture, as it turns out, is approximately correct, al-
though certain modifications have still to be considered in
future work,

This investigation, conducted at Harvard University,
was sponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

The author wishes to acknowledge indebtedness to Dr.
Andrew Vazsonyi who carried out all the detailed computations
and supnrlied many ideas during the hours of discussion of
various fine points of the computations and the fluid mechan-
Tos,
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SYMBOLS
a accustic velocity
D half nozzle throat dimension
M Mach number

pressure

Py Prandtl number

q velocity (components wu, v)

Q residual

’],r radius of curvature of streamline

w complex~velocity potential

X¥ coordinates in physical plane

z complex coordinate in physical plane

o angle between VY and N 1lines

& isentropic exponent

8 lattice spacing in computation

€ fraction of lattice svacing from net point to shock
wave

(0s) deflection angle of streamline produced by an obligue
shock

Y stream function

n stream function for incompressible fluid

¢ velocity potential for incompressible fluid

Oy oblique shock angle

P mass density
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w rate of rotatioan

wt = == dimensionless rotation

Subscripts

a condition after a shock wave

b condition before a shock wave

er criticael condition

| incompressible

£ N denote differentiation in the corresponding

direction
0951429349495 lattice points

o stagnation condition

RESULTS OF RELAXATION SOLUTION OF THE FLOW

THROUGH A HYPERBOLIC NOZZLE

Reference 7 shows how t0 apply the relaxation method to
the solution of compressible fluid flow problems in two di-
mensions, A simple channel was chosen for first investiga-
tion, so that attention could be concentrated on the diffi-
culties of the compressible fluids part of the problem with-
out being bothered by difficult geometry, As a consequence,
the channel formed by two hyperbolas was chosen. The complex
potential function for this nozzle is

v = sinh™? gz (1)
where
2 =X 4+ 1y
w=2¢ + i n

€ velocity potential

n stream function
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The physical shape of this nozzle in the X,y plane is easily
computed from

sinh £ cos nw

b 4

(2)

v cosh £ sin n

while the velocity q3 of an incompressible fluid flowing
through this passage is given by

1 _ cosh 2¢ + cos 2n (3)
Q42 2

Figure 3 shows the § and M lines in this nozzle, These
lines are the coordinate system used in the compressible
flow solutions, Figure 4 shows the flow of an incompressi-
ble fluid through this passage. This solution is to be com-
pared with later solutions for the flow of compressihle
fluid at high velocity, All the remaining figures (5
through 30) show various facts about the flow of a gas
through this nozzle while table I summarizes various numer-
ical details, It should be observed that the flow is essen-
tially that of a conventional venturi meter for all cases in
which the Mach number at the center of the minimum section
is M < 0,812, This is the limiting case essentially as
would have been described by the solutions of Taylor. By
graphical interpolation (fig, 9) it was found that M = 1
first appears at the wall for a center Mach number of 0,772,
The appearance of M = 1 at the nozzle wall is in no way
critical for the flow through the nozzle. It is of interest
only because it formerly was, and occasionally still ig, er-
roneously associated with some eritical aspect of the flow,
Shock waves do not, and indeed could not, occur when only
one point has reached the local sonic velocity.

The essentially subsonic flows of figures 4 through 8
are equivalent to the results recently published by Southwell,
Greene, and Fox (references 8 and 9) except for a different
nozzle shape. The work of these two papers and the present
report were carried out entirely independently and the extent
to which the results agree is gratifying,

Before the solutions with shocks are discussed, it
should be observed that the computer has a choice of the
type of shock wave he wishes to consider, Should shock
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waves be normsl or oblique? At the wall the immediate thought
is to use only normal shocks since, then, the direction of

the stream is unaltered on crossing the shock and hence the
stream continues along the wall, As will be discussed later,
a streamline curvature Jjump occurs ascross the shock which re-
quires a curvature singularity in the subsonic flow follow-
ing the shock., This singularity arises naturally during the
course of the relaxation solution., If an oblique shock had
been used, solutions could have been obtained which woulad
have included a singularity, in some cases a stagnation point,
downstream from the shock wave, In this report it was de-
cided to use only normal shocks at the wall. In an actual
nozzle, the boundary layer would alter the shock boundary
condition considerabdly.

Figures 10 through 12 show solutions with partial shocks,
that is, shocks that do not extend all the way across the
nozzle, Figure 12 is included in this category in spite of
the fact that the shoeck is drawn to extend completely across
the nozzle, This case is a solution for which the shock
waves from oppsite walls have just combined. The shock
waves are here tangent to the M = 1 1line at the center
line of the channel, Thus, the shock waves become infini-
tesimal in magnitude. In the numerical work from which this
solution was drawn, much higher accuracy would have been
needed to distinguish between the solution as drawn and the
solutions obtained, by merely erasing a small section of the
shock and M = 1 1line at the center of the nozzle. In
other words, with a stream function of the order of 20,000
at the wall compared to zero at the center line there is not
sufficient accuracy to distinguish precisely when the shock
waves first combine, In figures 12 through 16 the shock
wave 1s gradually moving down the nozzle essentially as pre=-
dicted by the one~dimensional theory.

The first fact to be observed about these solutions
with shock waves is the fact that they are not normal but
curve upstream toward the center of the passage, In the
course of obtaining solutions normal shock waves were in-
serted 1In the passage in whatwes considered the proper loca=
tion. During the course of solution these shock waves had
to be moved and made oblique by the processes described in
appendix I in order to eliminate the residuals. As a first
approximation it might be observed that the shock waves must
curve so that the rate of change of entropy normal to the
streamlines gives rise to a sufficient magnitude of rotation
term of the differential equation to replace the density
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terms of the differential equation which decrease discontin-
uously across the shock wave, The photograph (fig, 17)
taken in a high-speed wind tunnel at Harvard University il-
lustrates such a shock, =

In figure 17 there is also shown another photograph at
the "same" condition on a different day taken in 4 micro-
seconds with a schlieren system. The pPhenomenon of many
shocks is a nonsteady one probably associated with the turbu-
lence of the air stream. Small "turbulence" pressure waves
unable to pass through the throat accumulate there until
they become a shock wave of sufficient magnitude to pass
through., It should not be inferred that the partial shocks
of the solutions are of no importance because they were not
found in these nozzle experiments., For an airfoil in free
flight only partial shocks are possible, After complete
shocks are formed, agreement between wind-tunnel and free-
flight conditions could not be expected,

Everything in these solutions appears to follow essen-
tially the conjectured progress of development and growth of
the shock waves. (See fig. 2,) That this is not quite cor-
rect can be seen by examining figures 8 and 10 more closely.
It will be observed that the shock wave seems to arise (fig.
10) not at the point where the M = 1 line touches the wall
(fig. 8) but somewhat upstream of this point, and, in fact,
makes a sudden appearance (not starting with zero length
near the wall), This can also be seen from the dotted line
in figures 20 and 21, The changes that take place as the
flow conditions are changed are shown again in figures 18
through 21, where the variation of Mach number and pressure
along the center line and along the wall are shown, The
variation in Mach number near the wall is shown in figure 10,
It will be observed that the Mach number and pressure dis-
tributions along the wall proceed smoothly up to a shock
wave., They then, of course, must change abruptly to the sub-
sonic value appropriate to a shock wave at the correct angle
(in this case normal) for the Mach number existing ahead of
the shock., The pressure and Mach number do not vary smoothly
from this value, however, but are shown with a discontinuous
change on the subsonic side of the shock, For the solutions
presented in this report, the Mach numbers at all net points
along the wall on the subsonic side of the shock wave fell
on a smooth curve which when extrapolated gave the disconti-
nuities shown, For the row of net points adjacent to the
wall no peculiar phenomena were required to get a solution,
Later work, not reported here, has produced cases in which
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the Mach number rises very steeply from the value after the
shock and then turns smoothly into the descending Mach num=-
ber curve. Thus it appears that the curves of this report
should show a steep rise rather than the discontinuities.

Although the precise nature of the singularity at the
wall in the subsonic flow following a shock has not been de-
termined, there is no difficulty in finding the qualitative
explanation of this phenomenon. Consider the supersonic
flow of a compressible fluid along the convex side of a wall
of given radius of curvature, In order that the fluid fol~
low the wall there must be ad jacent to the wall a normal
component of pressure gradient such that the pressure in-
creases away from the wall, This pressure gradient is re-
quired to turn the velocity vector as the fluid moves along
the curved wall, If, now, a shock wave stands across this
flow and reaches the curved wall, the stream ahead of the
shock is left unaltered, The stream immediately behind the
wave is determined by the shock wave conditions, The perti-
nent condition for the present considerations is the fact
that, except for modifications caused by the entropy change,
the lower the pressure (the higher the velocity) before a
normal shock the higher the pressure immediately following
the shock, ©Since the pressure before the shock increases
away from the wall, the pressure after the shock will de-
crease away from the wall., Hence the streamlines immediately
behind the shock must be curved away from the wall,

For the solutions presented in this report, the fluid
was required to follow the wall, The streamlines behind the
shock must, therefore, reverse their curvature in such a way
that the inflection point approaches the shock wave as one
moves closer to the nozzle wall; while at the wall, the in-
flection point coincides with the shock wave., In a gualita-
tlve sense, therefore, the subsonic flow behind the shock
wave 1s similar to the isentropic flow of a fluid along a
wall with a discontinuity of radius of curvature. The flow
of an incompressible perfect fluid along a wall with a dis-
continuity of radius of curvature has been studied (reference
10) and leads to an infinite rate of change of velocity along
the wall., Thus there is a singularity in the flow of an in-
compressible fluid along a wall with a jump in curvature of
the same type as that found in the subsonic flow following a
shock wave,

In the explanation of the wall gingularity in the sub-
sonic flow following a shock wave, it was noted that the
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entropy jump through a shock would cause some modification

of the explanation. On figure 22 the ratio of the radius of
curvature of a streamline before and after a normal shock is
shown as a function of the Mach number before the shoek,
taking into account the changes of entropy as they actually
occur. Only at one Mach number is it possible for the stream
to continue along a wall (with continuous curvature) without
a singularity, and that is at a Mach number given by equation
(22), which for air with ¥ = 1,40 is at M = 1.66.

An infinite rate of rise of pressure along any stream-
line adjacent to the wall is rot vpossible because of the
second law of thermodynamics vhich nrevents an expansion
shock. By writing the equation of continuity, momentum, and
energy for a stream tube element enclosing a standing wave,
there is found tn be one and only one permissible subsonic
state for each initial state, provided it is permissible to
use an element the length of which in the direction of the
streamlines is of higher order than its width. To find out
what can happen at the wall, it is necessary to use a stream
tube element with the wall as one side and with a width of
the same (or higher) order as the length. If such an element
is used, the effects on its sides are of the same order as
the effects on its ends, and, consequently, the conclusions
about unique state after the wave do not follow.

The rapid rise in Mach number along the wall after a
shock wave varies in severity with both the wall curvature
and the initial Mach number. In figure 23 the ratio of the
Mach numbers before and after this rapid rise is plotted
against the Mach number before the shock. There is also
plotted the ratio of Mach numbers across a normal shoek. It
apoears that for the present nozzle the rapid rise of Mach
number following a shock caused by the curvature singularity
would just compensate for the Mach number drop through the
shock itself at M = 1,075. Thus, it appears that if a shock
solution had been sought at a lower Mach number than 1.075,
there would have been a rapid rise in speed along the wall
which would have left a supersonic stream moving faster than
the original stream. The present investigation needs exten-
sion at this point if questions concerning the first appear-
ance of a shock wave are to be answered.

It thus appears that this report takes a step in the
direction of clarifying the so-called critical conditions
associated with the first aprearance of shock waves but falls
far short of an adequate explanation.
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It appears that not only is the perfect fluid without
shocks an insufficient mathematical theory to cover the prac-
tical phenomena arising in connection with the flow of com-
pressible fluids but that even the extended theory which in-
cludes compression shock discontinuities, as in this report,
is not adequate to describe the facts properly., It is probdb-
able that a sufficiently general mathematical theory (and
presumably a fluid with friction would provide such) could
give smooth transitions from one type of solution to another,
There is, however, no reason to assume that such solutions
would be either unique or stable.

It may be argued that the sudden jump from one type of
solution to another, as required by the present theory, does
not contradict experimental observations, True., However,
consider the case in which Taylor's limiting solution occurs
for a passage in which the velocity at no point has yet risen
to as high a value as M = 1,07, In this case no shock waves
can arise at all if a discontinuous increase of veloeity at
the wall is considered objectionable, The present theory
(perfect fluid with shocks) is not adequate to cover all
cases but must be extended.

Figures 19 and 21 should bYe compared with figure 1. It
is seen that the one-~dimensional theory has heen modified con~-
siderably and has been modified in different ways for the
nozzle axis and for the nozzle wall,

The flow through the nozzle is plotted against pressure
at various points in figures 24, 25, and 26, The reason for
the differences in appearance of these figures can be under-
stood by comparison with figures 4 through 16, 19, and 21.
The importance of these differences follows if it is con-
sidered that nozzle experiments are usually performed by reg-
ulating the pressure in a large tank into which the gas dis~-
charges or by regulating the pressure at a small hole located
somewhere in the nozzle wall. It is quite obvious that there
is no guarantee that a single-valued relation exists between
the pressure at a given point and the flow through the nozzle,
It is quite possible for a decrease in pressure to correspond
to a decrease in flow rather than the usual increase in flow.
In particular, a pressure hole drilled at certain points in a
nozzle may read a given value for as many as three different
flows. It may well be that some of these are more stable
than others, and therefore experimental difficulties and
anomalies might well arise in nozzle experiments, A few ad-
ditional results of interest are shown in figures 27 and 28.
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In figure 27 the distribution of rotation ir the nozzle is
shown for the solution of figure 13. This rotation is far
from negligible, particularly as the shock wave moves down-
stream and becomes stronger. This rotation is such that it
will require the stream to separate from the wall sufficient-
ly far downstream from the nozzle throat. For the perfect
fluid considered here, the rotation once produced cannot b=
destroyed. Thus far downstream from the nozzle throat where
the velocity (without rotation) would approach zero, it can-
not now do so since the rotation does not decrease, The stream
function is to be considered as a surface plotted over the
region of space through which the fluid flows. This surface
will have the same shape as a soap film stretched over a
hole the shape of the domain and loaded with a pressure pPro-
portional to the fluid rotation at the corresponding point,
If such a film were made for the present nozzle, the soap
film would be steepest at the throat and become flatter and
flatter on receding from the throat either upstream or down-
stream, Thus the fluid velocity would be greatest at the
throat and apvproach zero at infinity. If there is Totation,
however, the soan film would be loaded. Since the rotation
cannot decrease, the loading does not decrease away from the
throat and hence the soap film, instead of becoming flatter
and flatter, is bdulged by the lo=d. If the slome of the
soap film is again intervreted as fluid veloeity, the fluid
will be moving away from the throat on one side of the bulge
and toward the throat on the other. Where the bulge first
starts, there would be the separation point in the nozzle.
The consequences of this separation were not investigated.
While this analogy is strictly correct for incompressible
fluids only, it shows clearly the probdblem involved.

In figure 2% the variation in entropy behind the shock
waves is shown for all of the solutions with shocks, Since
entropy is a function of the stream function only for a par-
ticular solution, such a composite figure is possible (such
a figure is not possible for the rotation which is a func-
tion of pressure as well as entrovpy gradient). By a refer-
ence to the computation curves of the earlier revort (refer-
ence 7), it is obvious that this change in entropy causes a
very considerable alteration of the properties of the fluid.
It is for this reason that the pairs of figures, 18, 39, and
20, 21, show considerabtle differences. (For constant entropy,
p = £(M), and these figures would differ only by an ordinate
scale change.)

In figure 29 the shock waves for all the solutions are
assembled for comparison, It is clear how the shock waves
arise near the wall, grow and move downstream.
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EFFECTS OF FRICTION

Figure 30 shows a series of photographs of the flow
through a hyperbolic nozzle taken in a high-speed wind tun-
nel at Harvard University. It is not surprising that this
flow in no case looks like the predicted flow, The rela-
tively small radius of curvature at the throat of the noz~-
zle investigated makes it impossible for a real gas with
friction to follow the walls, Since for low velocity a jet
separating from both walls is not very stable, the stream
usually separated from one wall and passed along the other
(f1low nonsymmetrical about axis of nozzle)., As soon as
shock waves of reasonable magnitude appeared, the stream
separated from both sides and passed out as a free jet.
Thus, there will have to be inecluded in any complete inves~
tigation the effects of friction on the modification of the
effective boundary shape by the boundary layer, which modi-
fication will eventually have to include flow separation
which at the present cannot be satisfactorily predicted; and
also the boundary layer will introduce very considerable
changes in the partial shock waves which appear and conse-
auently will greatly affect the pressure and velocity dis-
tributions along the wall near the throat of the nozzle.
Such friction effects will, it is reasonably certain, always
lead to flow separation at least locally between the end of
a shock wave and the wall, Two other effects which might be
worthy of note, although not coming directly under the head-
ing of friction, are (1) moisture in the air and (2) heat
transfer, It is quite probable that the first shock wave
encountered by the stream in the photographs of figure 30 is
closely connected with the moisture in the atmosphere as
changes in form of this "throat shock" oceur with changes of
atmospheric moisture,

The consideration that the nozzle is not thermally con-
nected to any source or sink of heat (generally not true) is
not a guarantee that no heat transfer to the air stream
takes place. Since the temperature in the boundary layer of
a gas with Prandtl number other than Pr = 1 would not be
constant, the nozzle to be in equilibrium with the gas would
have a varying wall temperature along the nozzle length,

For a metal nozzle this would necessitate a congiderabls
flow of heat from one portion of the nozzle to another and
hence from one portion of the gas stream to another. It is
not likely that this effect is ever very large but it should
not be forgotten completely since, in some cases, it might
be significant,
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CONCLUSIONS

The two~dimensional flow of a frictionless, adiabatic,
perfect gas through a hyperbolic nozzle follows very closely
that to be expected from the investigations of Taylor (ref-
erence 3) as long as no shock waves appear. A symmetrical
supersonic region appears near the wall at the throat for a
sufficiently high flow through the nozzle. There is a great-
est flow above which this type of flow no longer exists,

In spite of attempts to determine exactly what it was
that caused the symmetrical solutions to cease existing it
could only be noted that as the maximum velocity got higher,
the residuals (local fluid rotation) became more and more
difficult to dispose of. When it became absolutely impossi-
ble to dispose of the rotation (a state of affairs that is
sure t0 remain uncertain in a finite computation effort),
shock waves arise which greatly alter conditions and inci-
dently produce some rotation, thus permitting a solution to
be found,

The solutions presented in this report constitute a
story of the growth of the flow pattern inside of a nozzle
from zero velocity to the highest attainable velocity. This
flow picture is a good first approximation to what really
happens in a two-dimensional nozzle as loeng as the real flow
through the nozzle is free from flow separation. Further
accuracy of prediction of what happens in a nozzle can be
attained only by using a more complicated fluid continuum
which at least has the additional property of friction.

Critical (greatest) flow through a nozzle is not reached
until the shock wave first extends all the way across the
nozzle passage, During the growth of the partial shocks,
however, the flow changes only 1 percent., Tha greatest flow
is 0.7 percent less than the theoretical maxiwum that would
be obtained if the M = 1 1line extended across the nozzle
at the throat,

Harvard University,
Cambridge, Mass., February 10, 1945,
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APPENDIX I
SOLUTIONS WITH COMPRESSION SHOCKS

In a previous report (reference 7) a brief description
was given of the method of fitting compression shocks into
the numerical solution. This method has been further per-
fected and is presented here.

In the transformed (f,n) plane, the streamlines, V =
constant, almost coincide with the N constant lines when
the shock waves are nearly normal, This circumstance greatly
simplifies the resulting formulas, so that the derivation
will be carried out with these assumptions, Figure 31 shows
a streamline crossing a shock wave from the supersonic, b,
region to the subsonic, a, region. The obliguity, O 0f a

shock is given by computation curve 5 of reference 7 in terms
of the Mach number of the approaching stream and the deflec-
tion angle ®. This deflection angle can be computed from
the residuals at points 1 and 2 as follows. The streamline
makes an angle a with the £ axis given by

_rany Ve
tan a = <S€ 3 = - W; (4)
Thus
Ve Ve Ve, =V
w=aa““bzwb"\u-a: .b\lx . i
Ny, n, n

where the last form is obtained by neglecting the very small

difference between Wn and VY, .
b na

Now, observe that if the shock wave had not been present
there would have been a "supereconic" value of Wab at point

2 which would have made the residual at point 1 equal to
zero, If, however, the value of Wga from the subsonic so-

lution is used in computing the residual 21y it will have
the value

Qy = Vy =~V = VY - ¥, - W&b 8 (6)

fab
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or
Ve = V¥, = Q,
= (7)
ng .
Similarly
V. = b TR (8)
be 5

Qy + Qa2 5 21 * Qp (9)
Cp:—'_——-"“a i i .
& U, -V,

Another relation to be satisfied by the shock wave is
obtained by observing that the value of V¥ does not change
across the shock. Thus

Vy + e8¥e = ¥y =~ (1 - ¢) §V¢ (10)
>'b a

from which
- - &y
¢ = Wz( bt )ga (11)
§ly, = vy
by

a

Again using the relations (7) and (8)

O

2
S eme (12)
, Qy + Q2

The shock wave divides the distance between net points
inversely as the residuzals.

Finally, a shock wzve as treated in this report, is as-
sumed to be continuous, not branched, and ending either at
the wall or where M = 1,

The technigue of solution, then, is to attempt to elim-
inate all residuals. Failing this, an attempt is made to ac-
cumulate all residuals along some line smong the points. In
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the present work it was always fairly obvious where the shock
would be by observing the trend of solutions. Furthermore,
by observing the sign of the rotation term that is needed
after the shock to balance the decrease of the density term,
it was fairly obvious which way to bend the shock. Hence,
early in the course of solution, it was possible to sketch in
a likely shock wave and with equations (9) and (12) to com-
pute the required residuals at points on both sides.

Now as the solution progresses, and residuals are moved
to the tentative shock position, the shock wave angle and
position (by continuity of shock line these are not independ-
ent) are gradually altered. Specific instructions at this
point cannot be given but it is worth observing that for any
initial Mach number there is a maximum possible deflection
angle and that for shock waves in a stream near M = 1, the
maximum permissible deflection is very small, Hence care
must be exercised during solution to avoid exceeding the max-
imum permissible sum of residues as given by equation (9)
with the maximum @,

The formulas of this appendix were derived after making
assumptions about the streamlines and shock waves (tan Qg & Qg

tan ap = ay). As a solution nears completion, these assump-

tions can be checked, If they are not met with sufficient
accuracy, more elaborate formulas must be derived using es-
sentially the same methods as the above-mentioned.

APPENDIX 1II

THE STREAMLINE CURVATURE JUMP ACROSS NORMAL SHOCK WAVES

Let a streamline pass through a shock wave as in figure
32, and suffer a Jjump in radius of curvature from Ry to

Ra. Assume the stream approaching the shock wave is a per-

fect gas with uniform stagnation state. The approach flow
will then be irrotational.

The momentum condition applied normal to the streamlines
gives

dp _ pg®

or r (18)
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for each side of the shock wave., Hence, by division,

R
2.9 EBQ) (14)
Ra qa apb s

where the subscript s denotes that the derivative is to be
evaluated along the shoeck wave.

The change in pressure across the shock is given by the
momentum equation as

Pa = Pp * Ppdp® ~ Pad,°% = oy + Pplap® - auq9p)  (15)

in view of the continuity condition qub = paqa.

Before eliminating P, between equations (14) and (15),
it is well to note FPrandtl's relation

- 2 2+_Y____
X

" 2
%% = %%r = 5 7 2b 9y (16)

where qcr2 is a constant because of the assumed constant

stagnation state of the approach stream.

Now by equation (14)

qu

=

Rb /l d pr(qbz A= chg) \
- 3P | (37)
B, b /

2
Ger

where the subscript s is dropped, as the derivative now de-
pends only upon the approach Mach number. In fact Ry /R,

depends only upon the approach Mach number.

Carry out the differentiation indicated in eauation (19)

and note that a2 = %B and M = 3. There results
o) a
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R 2 2 L q 2 da-.. = g
2.3 J;. 5 oL ¢ S0P (18)
R, b !

Aop® Py

8

The remnining derivative term is found to have the value =2
by using the momentum equation along the streamlines

d
qdq+=2=0 (19)
)
Thus
R a.° 2 2
L =D _ (¥ -1)-M (20)
“a  4er®
By eliminating qcr2 from equations (16) and (20), there is
obtained finally
R M a Y + 3
o . [M o .—___:! (21)
Rg 1 + Y =1y 2
The ratio of curvature radii varies from -1 at M = 1,
through O at M = img—i ( =1.482 for Y = 1,40), through
*l at N = 1,66 for Y u 1,40, and —> o a5 N-—>a. | She
curve is shown as computation curve (fig. 22). The Mach

number at which no change in curvature occurs across a shoek
wave is given by

e A
Y + 1 Y. & 33" ol =
PLETN (EE P!

~
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APPENDIX III

ADDITIONAL REMARKS ON THE NUMERICAL SOLUTIOWN

OF SUFPERSONIC REGIONS

There was no definite procedure specified in the previ-
ous report (reference 7) by which solutions in supersonic
regions could be obtained.s It is still impossible to write
any rigid instructions that are sure to work, This is a
general difficulty as Fox snd Southwell (reference 9) state
that their iteration method diverged after reaching a minimum

value.

The residuals in the solutions could be reduced consid-
erably by the following procedure: )

1, Obtain a rough solution using q* constant as ex-
Plained in reference 7.

2., Move residuals around somewhat in an attempt to im=-
prove the solution. During this process, draw q* versus
N curves to see that they are smooth, This is especially
important for the evaluation of the properties at the nozzle
wall,

3. Use a finer net making a first estimate of net val-
ues by using a q* variation as already found for the coarse
net,

Some trouble may be experienced in interpolating to a
finer net in regions were M = 1, The variation of g3 from

point to point may be such that, on interpolating, the V
gradient exceeds the maximum possible value; or if the gradi-
ent is held down to its maximum permissible value, then the
resulting streamline with the fine net may differ considera-
bly from the corresponding streamline on the coarse net,

This difficulty could be avoided by using at each net point
not the q; for that point, but an average q; for that

point and two points on each side of it on the next finer
net. Using an average from a still finer net was found to
offer no additional advantage., The five q; values (one at

desired point and two on each side on finer net) were weighted
1, 2, 2, 2, 1 which gives approximately the area in the




NACA TN No, 1003 23

region +8§ on each side of the desired point, A few other
averages were tried without noticeable benefit. In partic-
ular, since the mass flow is almost constant near M = 1,

it can be shown that a harmonic mean shouvld be taken but the
resulting "effective" q; was not appreciably different

from the average as above-mentioned,
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(a) Shock wave at nozzle throat. Exposure Yo second,

On attempting to repeat the above experiment the following photograph was obtained.

(b) Non-steady shock waves at nozzle throat. Exposure 4 microseconds. Turbulence is probably responsible for this non-steady phenoniena:

Figure 17.—Schlieren photographs of air flow through a nozzle.



