496 research outputs found

    Tetragonal to orthorhombic phase transition in SmFeAsO: a synchrotron powder diffraction investigation

    Full text link
    The crystal structure of SmFeAsO has been investigated by means of Rietveld refinement of high resolution synchrotron powder diffraction data collected at 300 K and 100 K. The compound crystallizes in the tetragonal P4/nmm space group at 300 K and in the orthorhombic Cmma space group at 100 K; attempts to refine the low temperature data in the monoclinic P112/n space group diverged. On the basis of both resistive and magnetic analyses the tetragonal to orthorhombic phase transition can be located at T about 140 K.Comment: Submitted to: Superconductor Science and Technology PACS: 61.05.cp, 61.66.Fn, 74.10.+v, 74.62.Dh, 74.70.D

    Scientific Opportunities for Heterogeneous Catalysis Research at the SuperXAS and SNBL Beam Lines

    Get PDF
    In this short review, we describe the complementary experimental capabilities for catalysis research at two beam lines available to the Swiss community, SuperXAS at SLS (Swiss Light Source, Villigen) and SNBL (Swiss Norwegian Beam lines) at ESRF (European Synchrotron Radiation Facility, Grenoble). Over the years, these two facilities have been developed to provide powerful techniques for structural studies under in situ and operando conditions. These techniques, X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES) in combination with Raman or infrared spectroscopy provide new avenues for structure–performance studies of catalysts. Several exemplary studies are used to demonstrate the capability of these facilities

    Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    Get PDF
    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.Comment: 10 pages, 13 figures, accepted by A&

    Crystallographic Phase Transition and High-Tc Superconductivity in LaFeAsO:F

    Full text link
    Undoped LaFeAsO, parent compound of the newly found high-Tc superconductor, exhibits a sharp decrease in the temperature-dependent resistivity at ~160 K. The anomaly can be suppressed by F doping and the superconductivity appears correspondingly, suggesting a close associate of the anomaly with the superconductivity. We examined the crystal structures, magnetic properties and superconductivity of undoped (normal conductor) and 14 at.% F-doped LaFeAsO (Tc = 20 K) by synchrotron X-ray diffraction, DC magnetic measurements, and ab initio calculations to demonstrate that the anomaly is associated with a phase transition from tetragonal (P4/nmm) to orthorhombic (Cmma) phases at ~160 K as well as an antiferromagnetic transition at ~140 K. These transitions can be explained by spin configuration-dependent potential energy surfaces derived from the ab initio calculations. The suppression of the transitions is ascribed to interrelated effects of geometric and electronic structural changes due to doping by F- ions.Comment: 22 pages, 8 figures, 2 tables, Supplementary information is included at the end of the document, accepted for publication in Supercond. Sci. Techno

    Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

    Full text link
    Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. The O3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. We conclude that with a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.Comment: 27 pages, 15 figures, Astronomy & Astrophysics accepte

    Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations

    Full text link
    By reevaluating a 13-month stretch of Ulysses SWICS H pickup ion measurements near 5 AU close to the ecliptic right after the previous solar minimum, this paper presents a determination of the neutral interstellar H density at the solar wind termination shock and implications for the density and ionization degree of hydrogen in the LIC. The density of neutral interstellar hydrogen at the termination shock was determined from the local pickup ion production rate as obtained close to the cut-off in the distribution function at aphelion of Ulysses. As shown in an analytical treatment for the upwind axis and through kinetic modeling of the pickup ion production rate at the observer location, with variations in the ionization rate, radiation pressure, and the modeling of the particle behavior, this analysis turns out to be very robust against uncertainties in these parameters and the modeling. Analysis using current heliospheric parameters yields the H density at the termination shock equal to 0.087±0.0220.087\pm0.022 cm−3^{-3}, including observational and modeling uncertainties.Comment: Re-edited version, density revised downward due to data re-processing, accepted by A&

    Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas.</p> <p>Methods</p> <p>Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA), a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1<sup>st </sup>bolus of Gd-DTPA over the first hour, and then re-imaged with a 2<sup>nd </sup>bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods.</p> <p>Results</p> <p>The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine-lysine-bradykinin and labradimil increased the blood half-life of Gd-DTPA sufficiently enough to increase significantly the tumor tissue Gd-DTPA area under the time-concentration curve.</p> <p>Conclusion</p> <p>Metabolically stable bradykinin B2 receptor agonists, methionine-lysine-bradykinin and labradimil, enhance the transvascular delivery of small chemotherapy drugs across the BBTB of malignant gliomas by increasing the blood half-life of the co-infused drug. The selectivity of the increase in drug delivery into the malignant glioma tissue, but not into normal brain tissue or skeletal muscle tissue, is due to the inherent porous nature of the BBTB of malignant glioma microvasculature.</p

    The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations

    Get PDF
    The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding rocket payload built to study the crucial interface between the solar chromosphere and the corona by observing the strongest line in the solar spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in obtaining the first ever sub-arcsecond (0.5") images of this region with high sensitivity and cadence. Detailed analyses of those observations have contributed significantly to new ideas about the nature of the transition region. Here, we present a broad overview of the Ly-a atmosphere as revealed by the VAULT observations, and bring together past results and new analyses from the second VAULT flight to create a synthesis of our current knowledge of the high-resolution Ly-a Sun. We hope that this work will serve as a good reference for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure

    Pd-LaFeO3 catalysts in aqueous ethanol: Pd reduction, leaching, and structural transformations in the presence of a base

    Get PDF
    The reactive behavior of three catalysts based on Pd-loaded LaFeO3 was investigated in terms of the reducibility of Pd and its propensity to leaching into the liquid phase in flowing solutions prototypical of C–C coupling catalysis in a continuous flow reactor cell. In situ quick extended X-ray absorption fine structure spectroscopy showed that Pd remains stable and nonreducible in the flowing ethanol/water solvent mixture under heating to 353 K. However, ex situ transmission electron microscopy, high-energy X-ray diffraction, and fluorescence yield Fe K-edge X-ray absorption near-edge structure show that the addition of a significant amount of base (K2CO3, 0.1 M) results in the structural degradation of the perovskite support as well as the mobilization of Pd along the sample bed that is dependent on the structure and crystallite size of the perovskite. The results are discussed in terms of the use of perovskite-type oxides in various areas of research where they are placed in contact with liquid phases of variable temperature and elevated pH
    • …
    corecore