635 research outputs found

    On low-sampling-rate Kramers-Moyal coefficients

    Full text link
    We analyze the impact of the sampling interval on the estimation of Kramers-Moyal coefficients. We obtain the finite-time expressions of these coefficients for several standard processes. We also analyze extreme situations such as the independence and no-fluctuation limits that constitute useful references. Our results aim at aiding the proper extraction of information in data-driven analysis.Comment: 9 pages, 4 figure

    Extreme statistics for time series: Distribution of the maximum relative to the initial value

    Full text link
    The extreme statistics of time signals is studied when the maximum is measured from the initial value. In the case of independent, identically distributed (iid) variables, we classify the limiting distribution of the maximum according to the properties of the parent distribution from which the variables are drawn. Then we turn to correlated periodic Gaussian signals with a 1/f^alpha power spectrum and study the distribution of the maximum relative height with respect to the initial height (MRH_I). The exact MRH_I distribution is derived for alpha=0 (iid variables), alpha=2 (random walk), alpha=4 (random acceleration), and alpha=infinity (single sinusoidal mode). For other, intermediate values of alpha, the distribution is determined from simulations. We find that the MRH_I distribution is markedly different from the previously studied distribution of the maximum height relative to the average height for all alpha. The two main distinguishing features of the MRH_I distribution are the much larger weight for small relative heights and the divergence at zero height for alpha>3. We also demonstrate that the boundary conditions affect the shape of the distribution by presenting exact results for some non-periodic boundary conditions. Finally, we show that, for signals arising from time-translationally invariant distributions, the density of near extreme states is the same as the MRH_I distribution. This is used in developing a scaling theory for the threshold singularities of the two distributions.Comment: 29 pages, 4 figure

    A theory for long-memory in supply and demand

    Get PDF
    Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial markets [2, 19]. We show how this can be caused by delays in market clearing. Under the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If the size of such large orders is power law distributed, this gives rise to power law decaying autocorrelations in the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of volume v is proportional to v to the power -alpha and the size of executed orders is constant, the autocorrelation of order signs as a function of the lag tau is asymptotically proportional to tau to the power -(alpha - 1). This is a long-memory process when alpha < 2. With a few caveats, this gives a good match to the data. A version of the model also shows long-memory fluctuations in order execution rates, which may be relevant for explaining the long-memory of price diffusion rates.Comment: 12 pages, 7 figure

    Extreme times for volatility processes

    Get PDF
    We present a detailed study on the mean first-passage time of volatility processes. We analyze the theoretical expressions based on the most common stochastic volatility models along with empirical results extracted from daily data of major financial indices. We find in all these data sets a very similar behavior that is far from being that of a simple Wiener process. It seems necessary to include a framework like the one provided by stochastic volatility models with a reverting force driving volatility toward its normal level to take into account memory and clustering effects in volatility dynamics. We also detect in data a very different behavior in the mean first-passage time depending whether the level is higher or lower than the normal level of volatility. For this reason, we discuss asymptotic approximations and confront them to empirical results with a good agreement, specially with the ExpOU model.Comment: 10, 6 colored figure

    Non-characteristic Half-lives in Radioactive Decay

    Get PDF
    Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that the procedure proposed recently by Clauset et al. [SIAM Rev. 51, 661 (2009)] does not perform well as it rejects the power-law hypothesis even for power-law synthetic data. In contrast, we establish the existence of a power-law exponent with a value around 1.1 for the half-life density, which can be explained by the sharp relationship between decay rate and released energy, for different disintegration types. For the case of alpha emission, this relationship constitutes an original mechanism of power-law generation

    Pareto versus lognormal: a maximum entropy test

    Get PDF
    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units

    Modeling long-range memory with stationary Markovian processes

    Full text link
    In this paper we give explicit examples of power-law correlated stationary Markovian processes y(t) where the stationary pdf shows tails which are gaussian or exponential. These processes are obtained by simply performing a coordinate transformation of a specific power-law correlated additive process x(t), already known in the literature, whose pdf shows power-law tails 1/x^a. We give analytical and numerical evidence that although the new processes (i) are Markovian and (ii) have gaussian or exponential tails their autocorrelation function still shows a power-law decay =1/T^b where b grows with a with a law which is compatible with b=a/2-c, where c is a numerical constant. When a<2(1+c) the process y(t), although Markovian, is long-range correlated. Our results help in clarifying that even in the context of Markovian processes long-range dependencies are not necessarily associated to the occurrence of extreme events. Moreover, our results can be relevant in the modeling of complex systems with long memory. In fact, we provide simple processes associated to Langevin equations thus showing that long-memory effects can be modeled in the context of continuous time stationary Markovian processes.Comment: 5 figure

    The Bivariate Normal Copula

    Full text link
    We collect well known and less known facts about the bivariate normal distribution and translate them into copula language. In addition, we prove a very general formula for the bivariate normal copula, we compute Gini's gamma, and we provide improved bounds and approximations on the diagonal.Comment: 24 page

    Upper bounds for number of removed edges in the Erased Configuration Model

    Full text link
    Models for generating simple graphs are important in the study of real-world complex networks. A well established example of such a model is the erased configuration model, where each node receives a number of half-edges that are connected to half-edges of other nodes at random, and then self-loops are removed and multiple edges are concatenated to make the graph simple. Although asymptotic results for many properties of this model, such as the limiting degree distribution, are known, the exact speed of convergence in terms of the graph sizes remains an open question. We provide a first answer by analyzing the size dependence of the average number of removed edges in the erased configuration model. By combining known upper bounds with a Tauberian Theorem we obtain upper bounds for the number of removed edges, in terms of the size of the graph. Remarkably, when the degree distribution follows a power-law, we observe three scaling regimes, depending on the power law exponent. Our results provide a strong theoretical basis for evaluating finite-size effects in networks

    Intermediate Tail Dependence: A Review and Some New Results

    Full text link
    The concept of intermediate tail dependence is useful if one wants to quantify the degree of positive dependence in the tails when there is no strong evidence of presence of the usual tail dependence. We first review existing studies on intermediate tail dependence, and then we report new results to supplement the review. Intermediate tail dependence for elliptical, extreme value and Archimedean copulas are reviewed and further studied, respectively. For Archimedean copulas, we not only consider the frailty model but also the recently studied scale mixture model; for the latter, conditions leading to upper intermediate tail dependence are presented, and it provides a useful way to simulate copulas with desirable intermediate tail dependence structures.Comment: 25 pages, 1 figur
    corecore