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Abstract. Half-lives of radionuclides span more than 50 orders of magnitude.
We characterize the probability distribution of this broad-range data set at the
same time that explore a method for fitting power-laws and testing goodness-
of-fit. It is found that the procedure proposed recently by Clauset et al. [SIAM
Rev. 51, 661 (2009)] does not perform well as it rejects the power-law hypothe-
sis even for power-law synthetic data. In contrast, we establish the existence of
a power-law exponent with a value around 1.1 for the half-life density, which
can be explained by the sharp relationship between decay rate and released
energy, for different disintegration types. For the case of alpha emission, this
relationship constitutes an original mechanism of power-law generation.

1. Introduction

It is well known that most processes in physics are governed by a characteristic
scale. Radioactive decay is a prototypical example of this; for a given nuclide
(i.e., an isotope of an element in a given energy state), any nucleus has the same
constant probability of disintegration per unit time, which allows to define the
half-life t1/2 of the nuclide (or, equivalently, its lifetime), setting the time scale of
the decay [1].

It is noteworthy that these half-lives take very disparate values, from very
small fractions of a second to many millions of years (for example, 164 µs for
214Po and 4.47 · 109 years for 238U). One can wonder if there is some predominant
scale for the half-lives of the radionuclides, or, on the contrary, half-lives can be
considered as scale free, and which can be the physical reasons of that behavior.
It is remarkable that in the last decades, many phenomena that violate the usual
requirement of the existence of a characteristic scale have been found in physics
and beyond [2, 3, 4, 5, 6], under the form of power-law functions, the hallmark of
scale invariance. In parallel, the enormous range of values covered by the nuclear
half-lives will allow us to test the performance of a recently proposed statistical
tool to fit power-law distributions and to provide the goodness of such fits [7].

2. Data

We analyze data coming from the Lund/LBNL Nuclear Data Search webpage
[8]. A total of 3032 nuclides are found from a query in the range 10−34 s < t1/2 <
1034 s (to avoid 249 “stable” nuclides as well as 433 ones with unknown half-lives,
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Figure 1. (Color online) Empirical probability density of the half-
lives of the 3002 radionuclides available (19 values below 10−10 s are
not shown). The straight lines are 3 of the power-law fits explained
in the text, covering the fitting range obtained by the minimization
of the KS distance. The exponents are τ = 0.67, 1.19, and 1.09
(from left to right). Note that extreme caution should be present
when estimating a probability density using large bins, see Ref.
[10].

which are treated as having zero half-life in the web engine). 30 of these nuclides
do not have a well-defined half-life, as t1/2 is only bounded from above or from
below. These, as well as the neutron (which is not a radionuclide), are excluded
from the analysis. On the other hand, we include by hand the isotope 209Bi, which
was previously thought to be the heaviest stable nuclide but has recently been
found to be unstable, with t1/2 = 1.9 · 1019 years for α emission [9]. We deal then
with 3002 unstable nuclides, 723 of which are metastable isomers (excited states
with a “relatively” long half-life) and the rest, 2279, corresponding to ground
states. As we have found no big difference between the statistics of the ground
states and the isomers, we have considered both types of radionuclides together in
most of the analysis. For a few of them (17) the half-life comes in units of energy,
E, which can be converted into half-life using the formula t1/2E = ~ (where ~ is
the reduced Planck’s constant). This yields values of t1/2 below 10−16 s.
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3. Data Analysis

A simple plot of the half-life probability density on a log-log scale, displayed
on Fig. 1, shows that the most prominent signature of the distribution is a
linear trend for a certain range of half-lives, an indication of a possible power-law
behavior. So, our first step is to test the existence of a power-law distribution
above a certain cutoff value a of the half-life, i.e.,

D(t) ∝ 1

tτ
for t ≥ a,

where ∝ denotes proportionality, D(t) is the probability density of the half-life,
from now on denoted as t, and the exponent verifies τ > 1 (for normalization).

We try the method proposed by Clauset et al. [7], which looks for the value
of a which minimizes the Kolmogorov-Smirnov (KS) distance [11] between the
empirical cumulative distribution and the theoretical fit obtained by maximum-
likelihood estimation of τ (values of t below a do not play any role in the fit
of τ , but are important for the estimation of a). Once the values of τ and a
are found, a p−value is calculated, giving the probability that true power-law
distributed data, with the same exponent and cutoff as the ones estimated for
the empirical data, have a KS distance with its fit larger than the distance of the
empirical data with its fit. This is done by means of Monte Carlo simulations of
the resulting distribution, applying to the synthetic data exactly the same fitting
procedure as the one used for the empirical data (maximum-likelihood estimation
and minimization of the KS distance), in order to avoid biases in the p−value
[7, 12].

The half-life distribution is easily simulated in the power-law range (by means
for instance of the inversion method [11]), but it is necessary also to simulate
it outside this range, in order to optimize the value of a in the synthetic data
(recall that the simulated distribution has to be treated in the same way as the
empirical one). This is simply done by a kind of bootstrap method [7], where the
synthetic values of t are taken randomly, with replacement, from the empirical
data in that range (i.e., t < a). Details of the fitting and the goodness-of-fit
testing are explained in an appendix. Noticeably, the whole fitting and testing
procedure does not use that D(t) should be a straight line in a log-log scale.

The results of this method applied to the nuclear half-lives yield the values
a = 29.85 s and τ = 1.16 with a KS distance dm = 0.036 but with p = 0 (from
1000 simulations, that is, in no case a KS distance larger than the empirical 0.036
was found). So, the direct application of the Clauset et al.’s method leads to the
rejection of the power-law hypothesis.

However, Fig. 2(a) shows that this result is not convincing. We plot there, as
a function of the cutoff a, the KS distance and the p−value corresponding to the
case in which a were fixed or known (we denote the p−value for this case as q,
in order to distinguish it from the p−value when a is optimized). It is clear that
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the power-law fit must be rejected for any value of a below 107 s (as q = 0), but
above this value q takes non-zero values, fluctuating between zero and one, as it
would correspond to true power-law distributed data.

So, although the Clauset et al.’s method fails when applied to the whole data
set, we try to apply it now to a restricted data set, considering a range of variation
of the parameter a above 1000 s (to avoid the misleading minimum of the KS
distance at around 30 s). This leads to a new minimum at a = 8.8 · 107 s (close
to 3 years) and an exponent τ = 1.09 ± 0.01 with dm = 0.052 and p = 33%±
5%. This is an acceptable result, which means in fact that we cannot reject the
power-law hypothesis. Given that the maximum half-life is larger than 1031 s
(for 128Te), this power law spans more than 23 orders of magnitude. However,
one can realize that there are only 128 nuclides in the power-law range, which
makes its relevance as a characterization of nuclear properties rather limited. In
any case, we have found a power-law tail for the distribution of nuclear half-lives,
together with the conclusion that the blind application of Clauset et al.’s method
is not reliable. The condition a > 1000 s is not determinant, as other values lead
to very similar results, see Table 1.

In order to confirm the failure of Clauset et al.’s method we apply the absolute
minimization of the KS distance to simulated data, with a power-law distribution
with τ = 1.09 above a = 8.8 · 107 s and bootstrapping the empirical data below
that value [7] – the KS distance corresponding to two of them is shown in Fig.
2(b). In 80 % of the simulations the p−value turns out to be zero, leading to
the rejection of the power-law hypothesis when the data have, by construction, a
true power-law range. Notice that in this case, as the null hypothesis is true, the
p−value should be uniformly distributed between 0 and 1. Therefore, we have
come across a counterexample that invalidates the general applicability of the
Clauset et al.’s method. There is nothing surprising here, as, after all, these au-
thors do not provide any theoretical justification about why their ad-hoc method
should work, and only check its performance (under controlled conditions) in
simple synthetic examples.

Our second option for the distribution of half-lives is the use of an upper
truncated power-law distribution,

D(t) ∝ 1

tτ
for a ≤ t < b,

where a and b are the lower and upper cutoffs, respectively, with no condition on
the value of τ this time. Some examples of the applicability of this distribution
can be found in Ref. [13]. In this case we need to generalize Clauset et al.’s
method (a detailed description is provided in the supplementary information of
Ref. [14], of which our appendix gives a summary). The basic idea is again to
find the values of a and b which minimize the KS distance between the empirical
distribution and its fit. An important difference with the previous case is that
when b is not infinite, several power-law pieces can coexist in the data, and a
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Figure 2. (Color online) (a) Kolmogorov-Smirnov distance d for
different values of the lower cutoff a in a power-law fit of the
radionuclide half-life distribution, together with the associated
“q−value”, which would be identical to the p−value if the param-
eter a were not optimized. As a is also variable in the fit, the
q−value overestimates the true p−value. It is clear that the abso-
lute minimum of d yields q = 0 and therefore p = 0, but for a > 107

s the q−value becomes nonzero. (b) Comparison of the empirical
KS distance in (a) with that from simulations of a power law with
exponent τ = 1.09 for t > 8.8 ·107 s (and with random values taken
from the empirical distribution below that value, as explained in
the text). Only the simulations with the smallest (dm = 0.028,
best) and largest KS distances (0.073, worst) out of 100 simula-
tions are shown. The fraction of minimum distances above the
empirical value 0.052 defines the p−value.



6 ÁLVARO CORRAL, FRANCESC FONT, AND JUAN CAMACHO

criterion is necessary to select one of them. Restricting this time the a−value to
a > 1 s, the pair that minimizes the KS distance (determined with a resolution
of 5 points per decade) is a = 126 s and b = 7.9 · 106 s, with τ = 1.18 ± 0.01,
dm = 0.012, and p = 88% ± 3%. Therefore, a power law ranging more than 4
decades cannot be rejected.

However, this solution, with its high p−value, is not fully satisfactory, as its
range is a small fraction of the total half-life range. We have observed, by means of
computer simulations, that the generalization of the Clauset et al.’s method that
we are using leads to severe underestimations of the value of b, of many orders
of magnitude in some realizations. Adding a different restriction, for example
b/a > 108, we find the conditional minimum at a = 126 s and b = 1.3 · 1013

s, with an exponent τ = 1.19 ± 0.01, a KS distance dm = 0.015 and a p−value
p = 39%±5%, comprising 1277 different nuclides. We conclude that a power law
over 11 orders of magnitude is an acceptable fit (although higher values of b still
yield not too low p−values). All the fits are collected in Table 1 and the most
representative ones are shown in Fig. 1 (see caption for details). A more standard
analysis based on the calculation of the q−values (again, p−values where a and
b are fixed, as in Ref. [15]) show that indeed these power-law fits are acceptable.

The results found so far can be summarized by two power-law ranges, one
from, roughly, t = 100 to 1010 s, with τ = 1.19, and another one for t above
1010 s, with τ = 1.09 (the crossover region between the two exponents is difficult
to discriminate). The close value of the exponents lead us to speculate that the
two regimes could be in fact the same, with some artifact causing the small but
significant difference between their values. After all, we have studied about 3000
nuclides, but of course these do not constitute a complete sample. Among the
nuclides considered as stable, more than 100 are theoretically unstable, but with
a half-life that has not been possible to measure. And of course, not all nuclides
that may exist have been synthesized so far [16]. So, we leave the door open to the
fact that a unique exponent around τ = 1.15 ± 0.10 could describe the complete
set of radioactive half-lives above the range of a few minutes. This would imply
the existence of scale invariance for about 30 orders of magnitude.

It is interesting to see how these results are affected by the mode of disin-
tegration of the radionuclides. Different decays involve different processes and
even different types of interaction (strong for α emission and weak for β, for
instance). We can restrict the half-life statistics to nuclides that decay in a par-
ticular way. Table 2 shows the results corresponding to the α, β, electron-capture,
and isomeric-transition decays, including also the separation of all nuclides into
isomers and ground states. To be unambiguous, when we consider α disintegra-
tion, only those radionuclides that decay exclusively by α emission are considered,
and the same for the other types of disintegration. We fit a double-truncated
power-law distribution concentrating on the region of large half-lives (a > 1 s)
and see that in all cases the tail of the distribution is compatible with a power
law with an exponent between 1 and 1.3.
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4. Origin of Power-law Behavior

In the case of α decay we can give a simple explanation of the exponent.
Gamow’s model assumes the pre-existence of an α particle inside a potential well
[1]. Quantum tunneling of the particle leads to a very sharp relation between the
half-life and the energy Q released in the emission (which can be related to the
Geiger-Nuttall rule),

t = A exp

(

BZ√
Q

)

,

where Z is the atomic number of the resulting nucleus, B is a positive constant,
and A can be considered as a constant too, in a first approximation [17]. Defining
U = Q/Z2, with an unknown probability density f(U), conservation of probabil-
ity leads to

Dα(t) = f(U)

∣

∣

∣

∣

dU

dt

∣

∣

∣

∣

= f

(

B2

ln2 t/A

) (

2B2

ln3 t/A

)

1

t
,

where the factor F (t) that multiplies the hyperbolic 1/t tail constitutes a slowly
varying function for a broad class of choices for f(U) (i.e., F (ℓt)/F (t) → 1, ∀ℓ > 0
when t → ∞). For example, f(U) could be uniform, linear, parabolic, hyperbolic,
etc., with no influence on the 1/t asymptotic tail. This result is in surprising
good agreement with the empirical exponent found for the α decay, τ = 1.0, see
Table 2. Note that the present mechanism for power-law generation has some
resemblance with the ones collected in Refs. [6, 18], but, in contrast to them, it
is not derived neither from another power-law relationship between t and U (see
next) nor from an exponential energy-barrier distribution.

For the β decay a similar argument is possible. In this case, Sargent rule
establishes a different relationship between t and the released energy Q [19],
which, in a very crude approximation, could be considered as a proportionality
between t and 1/Q5, so,

Q ≃ C

t1/5

Then, the distribution of t could be obtained from that of Q, g(Q),

Dβ(t) ∝ g

(

C

t1/5

)

1

t1+1/5
,

which yields asymptotically a power law with exponent 1.2 if g is a slowly varying
function of t.

However, the fact that C could be constant is far from true, rather, it varies in
a range of many orders of magnitude for different nuclides [1]. A mathematical
theorem guarantees that, under very general conditions, the values above a high
threshold of a random variable tend to follow the so-called generalized Pareto
distribution [20, 21], which asymptotically yields a simple power-law tail when
the range of variation is broad (decay slower than an exponential). So, it is
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reasonable to assume that, over some threshold value, the half-life is given by
the product of two power-law variables, one with an exponent 6/5 (derived above
from Sargent rule) and the other one unknown, 1+ ν. Considering independence
between both factors, the distribution of the product is given by the convolution
of the logarithms of each factor, which turn out to be exponentially distributed.
The result is,

Dβ(t) ≃ ν/5

ν − 1/5

(

K1/5

t6/5
− Kν

t1+ν

)

,

where K is the minimum value of t for which this behavior holds. This yields a
power-law tail with exponent τ = 1+1/5 if ν > 1/5 and with exponent τ = 1+ν
if ν < 1/5 (but for normalization, ν > 0). In any case, the exponent τ of the tail
is constrained in the range (1, 1.2).

We notice that the gamma decay also leads to power-law relations between
the half-life and the released energy [1], with even exponents from t ∝ 1/Q3,
t ∝ 1/Q5, etc.; this means power-law distributions with τ ≃ 4/3, 6/5... very close
to one in all cases, in agreement with the results found for isomeric transitions.

Power-law behaviors as the ones found here for radioactive decays are widely
spread in nature. The origin of the abundance of these scaling laws is a topic of
great interest in our understanding of complex systems, i.e. systems containing
a large number of highly interacting components. Nuclei are a good example of
a complex system, as nucleons strongly interact among each other in such a way
that no theory is able to predict from first principles which nuclides will be stable
and which not. Though one might be tempted to believe that just a general
mechanism may be responsible for the ubiquity of power laws in nature, several
different explanations have been reported, such as aggregation processes [22, 23],
intermittency [24], self-organized criticality [3], and multiplicative processes [25,
26], see Refs. [6, 27, 18] for reviews. As discussed above, the power laws of nuclear
half-lives are simply related to the extremely steep relationships between half-life
and energy, which translate small changes in energy to variations of orders of
magnitude in half-life.

5. Other Power Laws and Other Fits

Going back to data analysis, one can perform the same study with the half-
lives of elementary particles. We have compiled a list of 131 baryons and mesons,
with t ranging from 10−25 s to about 10 min (for the neutron). The direct
application of the Clauset et al.’s method, described above, leads to a pure power-
law distribution with a = 2.4 ·10−14 s and τ = 1.13±0.03, comprising 19 particles
and with p = 7% ± 2.5%. Although this is in the limit of rejection, it is striking
that the exponent τ is essentially the same as for the radionuclides. The similarity
in some disintegration processes could explain this behavior.

Interestingly, other power-law ranges exist for the distribution of nuclear half-
lives. For the whole dataset, imposing b < 1 s (which corresponds to the region of
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short half-lives), we find the optimum values a = 5.0 · 10−5 s and b = 0.32 s, with
τ = 0.65 ± 0.02, dm = 0.023 and p = 40% ± 5%, comprising 460 radionuclides.
We can conclude that a second (or a third), flatter power-law regime is present in
the data, although incompleteness of the data for short half-lives can affect the
range of this regime, see Table 1.

The transition between the short and long half-life power-law regimes shows
a convex shape in log-log scale that is well modeled by a (truncated) lognormal
distribution from about 10−2 to 105 s, with the parameters of the underlying
(untruncated) normal distribution (x ≡ ln t) given by µ ≃ 3.4 and σ2 ≃ 30, if t
is measured in seconds. Again, there is an overlap region between the different
distributions, in which a power-law fit and the log-normal fit are both valid.

We are not interested in determining precisely when one distribution transforms
into another, but, more importantly, we have tested that the lower truncated
lognormal distribution is not preferred in front of the power law for values of
t above 100 s. This has been done by the straightforward adaptation of the
uniformly most powerful unbiased test proposed in Ref. [28]. The main idea is
that a power-law distribution constitutes a special case of a (truncated) lognormal
distribution, achieved when σ → ∞ and µ → −∞ but with σ ≪ |µ| in such a way
that the power-law exponent turns out to be τ = 1 + |µ|/σ2. A likelihood ratio
test evaluates if other parameters for the lognormal are preferred or not. In our
case the power-law fit cannot be rejected. The non-preference of the lognormal
can be extended to other related distributions [28].

6. Conclusion

In summary, the distribution of half-lives of the radionuclides has a power-law
tail, with an exponent slightly greater than 1, due to the abrupt relationship
between decay rate and released energy for the different transitions analyzed.
The broad range of scales covered by the distribution and the scarce number of
nuclides in the right-most part of it makes difficult the use of standard statistical
tools, and even a recently introduced fitting procedure [7] fails to detect the power
law. Careful analysis is necessary when dealing with power-law distributions with
such small exponents.
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8. Appendix

Our fitting procedure and the testing of the goodness of fit follow closely the
ideas reported by Clauset et al. [7], and are explained in more detail in the sup-
plementary information of Ref. [14]. Here we just provide and overview of the
basic method, further modifications are specified in the main text.

The maximum-likelihood (ML) estimation of the exponent of a power-law dis-
tribution of the form D(t) = (τ − 1)aτ−1/tτ , with t > a (and a known) is given
by

τ = 1 +
1

ln Ga

a

,

where Ga is the geometric mean of the data above the cutoff, ln Ga≡N−1
a

∑

t≥a ln t,
and Na is the number of such data. It can be easily shown that for true power-law
distributed data the ML estimator of the exponent (minus 1) follows an inverse
gamma distribution, with mean Na(τ − 1)/(Na − 1) asymptotically equal to the
true exponent (minus 1) and a standard deviation given by

ε =
τ − 1

(1 − N−1
a )

√
Na − 2

→ τ − 1√
Na

;

note that the uncertainty of the exponent goes to zero as its value goes to one
(which on the other hand is forbidden by normalization).

As the estimated value of τ only depends on the geometric mean of the data,
any data set with the same Ga will lead to the same value of the exponent and
the same uncertainty (if Na is fixed), independently of whether the data come
from a power law or from an alternative distribution. Providing a goodness of the
fit is necessary then. For that purpose one can use the KS distance [11], defined
as,

d = max∀t≥a|S(t) − Semp(t)|,
i.e., as the maximum absolute difference between the empirical cumulative dis-
tribution function, Semp(t), and the fitted cumulative distribution function, S(t).
For simplicity, we identify the cumulative distribution with S(t) =

∫ ∞

t
D(t)dt

(that is, we use the complementary cumulative distribution, which does not af-
fect the definition of the KS distance), and then

S(t) =
(a

t

)τ−1

,

while Semp(t) = n(t)/Na, with n(t) the number of data at or above t (and not
below a). In this way, large values of d denote bad fits, whereas small values
correspond to good fits, the boundary between large and small will be made
more precise below. Figure 3 illustrates the computation of the KS distance for
the nuclear half-lives with two special values of a, taken from Table 1.

The key of the Clauset et al.’s recipe is to consider the cutoff a not as a fixed
quantity, but as a parameter that needs to be estimated from data as well. Then,
the previous procedure (fitting of τ and calculation of KS distance) is repeated for
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Figure 3. (Color online) (a) Procedure for calculating the KS dis-
tance, exemplified with two data sets. In each case, both the em-
pirical and the fitted cumulative distribution functions are shown.
The KS distance dm is the maximum vertical difference between
both curves, and the value of the half-life corresponding to this
maximum is shown as a vertical line. Two additional curves, given
by S(t) ± dm, are also shown for clarity sake. The first data set,
on the left, is for the half-lives with t ≥ a = 29.85 s, corresponding
to the Clauset et al.’s solution, which yields a bad fit, with p = 0.
The second data set, on the right, is for t ≥ 8.8 ·107s, and although
it yields a larger KS distance (0.052 versus 0.036), leads to a much
better power-law fit, as it is more clearly seen on (b) on a doubly
logarithmic scale.

all possible a−values, and the selected one corresponds to the one that minimizes
the KS distance, i.e., dm = min∀a d. This leads automatically to one value of a
and τ .
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In order to quantify the goodness of fit we need to compare dm with the results
for true power-law distributed data. We simulate synthetic data sets, power law
distributed for t ≥ a, using

t =
a

(1 − u)1/(τ−1)
,

with probability Na/N and u a uniform random number between 0 and 1, and
bootstraping the empirical data set for t < a, with probability Na/N (and N is
the total number of data, ∀t). Then, we apply exactly the same ML estimation of
the exponent and calculation of the KS distance to each synthetic data set. We
stress that the KS distance is computed between the simulated distribution and
its ML fit (not the fit of the empirical distribution, which provides the parameters
for the simulation). In this way we end with a distribution of values of dm, which
allows one to compute the p−value of the fit, as the ratio between the number of
simulations with dm above the empirical one and the total number of simulations.

If we generalize the method to an upper truncated power-law distribution,

D(t) =
τ − 1

1 − rτ−1

aτ−1

tτ

defined in [a, b), with r = a/b, then the previous formulas need to be replaced by

1

τ − 1
+

rτ−1 ln r

1 − rτ−1
− ln

Gab

a
= 0,

√

Nab ε =

[

1

(τ − 1)2
− rτ−1 ln2 r

(1 − rτ−1)2

]−1/2

,

S(t) =
1

1 − rτ−1

[

(a

t

)τ−1

− rτ−1

]

,

t =
a

[1 − (1 − rτ−1)u]1/(τ−1)
,

for the ML estimation of τ , its asymptotic standard deviation (taken from Ref.
[29]), the complementary cumulative distribution, and the simulated values of
the variable in the power-law region, a ≤ t < b (taken with probability Nab/N),
respectively.
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condition a (s) b (s) b/a Nab c τ ± ε dm p (%)

b = ∞ 29.85 ∞ ∞ 1624 0.145 1.16±0.01 0.036 0

b = ∞, a > 103 s 8.8·107
∞ ∞ 128 0.018 1.09±0.01 0.052 33 ± 5

b = ∞, a > 104 s 8.8·107
∞ ∞ 128 0.018 1.09±0.01 0.052 37 ± 5

b = ∞, a > 105 s 8.8·107
∞ ∞ 128 0.018 1.09±0.01 0.052 37 ± 5

a > 1 s 126 7.9·106 6.3·104 1138 0.185 1.18±0.01 0.012 88 ± 3

b/a > 108 126 1.3·1013 1.0 ·1011 1277 0.198 1.19±0.01 0.015 39 ± 5

b < 1 s 5.0·10−5 0.32 6.3·103 460 0.085 0.65±0.02 0.023 40 ± 5

b < 1 s, b/a > 104 1.3·10−6 0.50 4.0·105 559 0.079 0.67±0.02 0.024 32 ± 5

Table 1. Results of several power-law fits and goodness-of-fit for the half-lives of
the 3002 radionuclides available. The results for the non-upper-truncated power
law (b = ∞) are calculated with a resolution of 100 points per decade in a,
whereas for the upper-truncated power law we use 5 points per decade in a and
b. Nab is the number of nuclides in the range a ≤ t < b, c is the value of the
proportionality constant of the power law needed to fit the whole distribution
in Fig. 1 (when t is measured in seconds), and ε is one standard deviation in
the distribution of the maximum-likelihood estimation of the exponent τ , see
Ref. [29]. The p−value is obtained from 100 simulations, and its uncertainty is
calculated as in Ref. [14]. The value p = 0 in the first row is maintained in 1000
simulations.
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case N a (s) b (s) b/a Nab c τ ± ε dm p (%)

all 3002 126 1.3·1013 1.0·1011 1277 0.198 1.19±0.01 0.015 39±5

ground 2279 126 3.2·1013 2.5·1011 1009 0.182 1.17±0.01 0.020 18±4

isomers 723 200 7.9·1011 4.0·109 248 0.338 1.25±0.02 0.038 25±4

α 170 126 3.2·1025 2.5·1023 22 0.003 1.00±0.01 0.082 69±5

β+ 607 501 3.2·1013 6.3·1010 281 0.833 1.29±0.02 0.036 30±5

β− 688 126 3.2·1017 2.5·1015 369 0.251 1.19±0.01 0.028 37±5

EC 82 2·105 5.0·1013 2.5·108 62 2.289 1.22±0.03 0.089 6 ±2

IT 192 2 7.9·109 4.0·109 106 0.103 1.16±0.02 0.053 42±5

Table 2. Results of a power-law fit to the half-lives of nuclides in their ground
or excited states (isomers) and to the nuclides that follow a certain unique decay
type. The fits are conditioned to a > 1 s and b/a > 108. EC denotes orbital
electron capture and IT, isomeric transition (γ ray or conversion electron emission
from an exited state). Other disintegration types yield very low numbers of
nuclides, N . Rest of symbols are as in the previous table.
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