In this paper we give explicit examples of power-law correlated stationary
Markovian processes y(t) where the stationary pdf shows tails which are
gaussian or exponential. These processes are obtained by simply performing a
coordinate transformation of a specific power-law correlated additive process
x(t), already known in the literature, whose pdf shows power-law tails 1/x^a.
We give analytical and numerical evidence that although the new processes (i)
are Markovian and (ii) have gaussian or exponential tails their autocorrelation
function still shows a power-law decay =1/T^b where b grows with a
with a law which is compatible with b=a/2-c, where c is a numerical constant.
When a<2(1+c) the process y(t), although Markovian, is long-range correlated.
Our results help in clarifying that even in the context of Markovian processes
long-range dependencies are not necessarily associated to the occurrence of
extreme events. Moreover, our results can be relevant in the modeling of
complex systems with long memory. In fact, we provide simple processes
associated to Langevin equations thus showing that long-memory effects can be
modeled in the context of continuous time stationary Markovian processes.Comment: 5 figure