13 research outputs found

    Catecholamines are active plant-based drug compounds in Pisum sativum, Phaseolus vulgaris and Vicia faba Species

    Get PDF
    Introduction: Catecholamines (L-DOPA and dopamine) are the key metabolites found in nervous system and their endogenous deficiency is associated with different patho-physiological disorders. Therefore, it is important to screen the new herbal sources of catecholamines for drug preparation. In this study, the amount of L-DOPA and dopamine were investigated in the leaves and roots of three species from legume family such as Pisum sativum (garden pea), Phaseolus vulgaris (haricot bean) and Vicia faba (broad bean); using TLC and HPLC. Methods: The seeds of P. sativum, P. Vulgaris and V. faba were treated and cultured under the glasshouse conditions. The extraction from 1 gram of each plant sample was obtained and assayed for L-DOPA and dopamine using thin layer chromatography (TLC) and reversed-phase HPLC. Results: The results indicated that all cultivars accumulated different levels of L-DOPA and dopamine in leaves and roots. The quantitative results showed that the metabolites concentrations were high in the leaves of P. Sativum and V. faba compared to that in roots. Conclusion: The present study may provide a new avenue for preparation and estimation of L-DOPA and dopamine from plant sources and may be used for further analysis and therapeutic studies

    Antioxidant activity and protective role on protein glycation of synthetic aminocoumarins

    Get PDF
    Background: Synthesized aminocoumarins are heterocyclic compounds possessing potential for the treatment of insulin-dependent diabetes mellitus with unexplored anti-glycative action. Results: In this study 4-aminocoumarin derivatives (4-ACDs) were evaluated in vitro for antiglycation (AG) activities by using the human serum albumin (HSA)/glucose system, for 8 weeks of incubation. The glycation and conformational alteration of HSA in the presence of the tested compounds were evaluated by Congo red assay, fluorescence and circular dichroism spectroscopy. The antioxidant (AO) capacity were also tested by four different assays including: DPPH (2,2'-diphenyl-1-picrylhydrazyl radical), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulphonate) diammonium salt), FRAP (ferric reducing antioxidant power) and beta-carotene-linoleic acid assay. The tested compounds showed AG and AO effects. The intensity of the accomplished AO potential is related to the type of the used assay. Significant alterations in the secondary (monitored by CD spectropolarimetry) and tertiary structure (assessed by spectrofluorimetry) of HSA upon glycation were mitigated by the 4-ACDs, suggesting their suppressive role in the late stage (post-Amadori) of the HSA glycation. Conclusions: By the analogues, in vitro ascertained AO and AG properties of 4-ACDmay be recognized as rationale for their protective role against oxidative changes of proteins, thereby precluding diabetic complications in humans

    Deciphering microRNA-mRNA regulatory network in adult T-cell leukemia/lymphoma; the battle between oncogenes and anti-oncogenes.

    No full text
    Adult T-cell leukemia/lymphoma (ATLL) is virus-caused cancer that originates from the infection by human T-cell leukemia virus type 1. ATLL dysregulates various biological pathways related to the viral infection and cancer progression through the dysexpression of miRNAs and mRNAs. In this study, the potential regulatory subnetworks were constructed aiming to shed light on the pathogenesis mechanism of ATLL. For this purpose, two mRNA and one miRNA expression datasets were firstly downloaded from the GEO database. Next, the differentially expressed genes and miRNAs (DEGs and DE-miRNAs, respectively), as well as differentially co-expressed gene pairs (DCGs), were determined. Afterward, common DEGs and DCGs targeted by experimentally validated DE-miRNAs were explored. The oncogenic and anti-oncogenic miRNA-mRNA regulatory subnetworks were then generated. The expression levels of four genes and two miRNAs were examined in the blood samples by qRT-PCR. The members of three oncogenic/anti-oncogenic subnetworks were generally enriched in immune, virus, and cancer-related pathways. Among them, FZD6, THBS4, SIRT1, CPNE3, miR-142-3p, and miR-451a were further validated by real-time PCR. The significant up-regulation of FZD6, THBS4, and miR-451a as well as down-regulation of CPNE3, SIRT1, and miR-142-3p were found in ATLL samples than normal samples. The identified oncogenic/anti-oncogenic subnetworks are pieces of the pathogenesis puzzle of ATLL. The ultimate winner is probably an oncogenic network that determines the final fate of the disease. The identified genes and miRNAs are proposed as novel prognostic biomarkers for ATLL

    Uncovering the role of sorbitol in Renilla luciferase kinetics: Insights from spectroscopic and molecular dynamics studies

    No full text
    Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide, resulting in the emission of a photon of light. This study investigated the impact of sorbitol on the structural and kinetic properties of Renilla luciferase using circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. Our investigation, carried out using circular dichroism and fluorescence analyses, as well as a thermal stability assay, has revealed that sorbitol induces conformational changes in the enzyme but does not improve its thermal stability. Moreover, through kinetic studies, it has been demonstrated that at a concentration of 0.4 M, sorbitol enhances the catalytic efficiency of Renilla luciferase. However, at higher concentrations, sorbitol results in a decrease in catalytic efficiency. Additionally, molecular dynamics simulations have shown that sorbitol increases the presence of hydrophobic pockets on the enzyme's surface. These simulations have also provided evidence that at a concentration of 0.4 M, sorbitol facilitates substrate access to the active site of the enzyme. Nevertheless, at higher concentrations, sorbitol obstructs substrate trafficking, most likely due to its impact on the gateway to the active site. This study may provide insights into the kinetic changes observed in enzymes with buried active sites, such as those with α/β hydrolase fold

    A computational prospect to aspirin side effects: Aspirin and COX-1 interaction analysis based on non-synonymous SNPs

    No full text
    Aspirin (ASA) is a commonly used nonsteroidal anti-inflammatory drug (NSAID), which exerts its therapeutic effects through inhibition of cyclooxygenase (COX) isoform 2 (COX-2), while the inhibition of COX-1 by ASA leads to apparent side effects. In the present study, the relationship between COX-1 non-synonymous single nucleotide polymorphisms (nsSNPs) and aspirin related side effects was investigated. The functional impacts of 37 nsSNPs on aspirin inhibition potency of COX-1 with COX-1/aspirin molecular docking were computationally analyzed, and each SNP was scored based on DOCK Amber score. The data predicted that 22 nsSNPs could reduce COX-1 inhibition, while 15 nsSNPs showed increasing inhibition level in comparison to the regular COX-1 protein. In order to perform a comparing state, the Amber scores for two Arg119 mutants (R119A and R119Q) were also calculated. Moreover, among nsSNP variants, rs117122585 represented the closest Amber score to R119A mutant. A separate docking computation validated the score and represented a new binding position for ASA that acetyl group was located within the distance of 3.86 Å from Ser529 OH group. This could predict an associated loss of activity of ASA through this nsSNP variant. Our data represent a computational sub-population pattern for aspirin COX-1 related side effects, and provide basis for further research on COX-1/ASA interaction

    Bioprocess optimization of interferon β-1-a in Pichia pastoris and its improved inhibitory effect against hepatocellular carcinoma cells

    No full text
    Interferon-β-1a (INF-β-1a) has gained significant attention due to its emerging applications in the treatment of different human diseases. Therefore, many researchers have attempted to produce it in large quantities and also in a biologically active form using different expression systems. In the present study, we aimed to improve the expression level of INF-β-1a by Pichia pastoris using optimization of culture conditions. The codon-optimized INF-β- 1a gene was cloned into pPICZαA plasmid under the control of alcohol oxidase I (AOX1) promoter. The protein expression was induced using different concentrations of methanol at different pHs and temperatures. The biological activity of produced protein was evaluated by anti-proliferative assay. The ideal culture conditions for the expression of INF-β-1a by P. pastoris were found to be induction with 2% methanol at pH 7.0 culture medium at 30 C which yielded a concentration of 15.5 mg/L INF-β-1a in a shake flask. Our results indicate that differences in glycosylation pattern could result in different biological activities as INF- β-1a produced by P. pastoris could significantly more reduce the cell viability of HepG-2 cells, a hepatocellular carcinoma cell line, than a commercially available form of this protein produced by CHO

    Production of Brucella melitensis Omp16 protein fused to the human interleukin 2 in Lactococcus lactis MG1363 toward developing a Lactococcus-based vaccine against brucellosis

    No full text
    The use of the food-grade bacterium Lactococcus lactis as a new cell factory is a promising alternative expression system for producing a desired protein. The Omp16-IL2 fusion protein antigen was cloned, expressed, and purified in this study. The Omp16-IL2 fusion gene was designed and cloned in pGH plasmid with appropriate restriction sites and subcloned in pAMJ2008 expression vector digested with the same enzymes. The purified recombinant constructed pAMJ-rOmp-IL2 was introduced into L. lactis subsp. cremoris MG1363 by electrotransformation. Finally, the expression and purification of Omp16-IL2 fusion protein was investigated. This study reports the construction of a recombinant L. lactis expressing the Omp16-IL2 fusion protein as an oral Lactococcus-based vaccine, as compared with commonly used live attenuated vaccines, for future studies against brucellosis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore