26 research outputs found

    The reproductive cycle of the thorny skate (Amblyraid radiata) in the western Gulf of Maine

    Get PDF
    The thorny skate (Amblyraja radiata) is a large species of skate that is endemic to the waters of the western north Atlantic in the Gulf of Maine. Because the biomass of thorny skates has recently declined below threshold levels mandated by the Sustainable Fisheries Act, commercial harvests from this region are prohibited. We have undertaken a comprehensive study to gain insight into the life history of this skate. The present study describes and characterizes the reproductive cycle of female and male thorny skates, based on monthly samples taken off the coast of New Hampshire, from May 2001 to May 2003. Gonadosomatic index (GSI), shell gland weight, follicle size, and egg case formation, were assessed for 48 female skates. In general, these reproductive parameters remained relatively constant throughout most of the year. However, transient but significant increases in shell gland weight and GSI were observed during certain months. Within the cohort of specimens sampled monthly throughout the year, a subset of females always had large preovulatory follicles present in their ovaries. With the exception of June and September specimens, egg cases undergoing various stages of development were observed in the uteri of specimens captured during all other months of the year. For males (n=48), histological stages Ill through VI (SIII-SVI) of spermatogenesis, GSI, and hepatosomatic index (HSI) were examined. Although there appeared to be monthly fluctuations in spermatogenesis, GSI, and HSI, no significant differences were found. The production and maintenance of mature spermatocysts (SVI) within the testes was observed throughout the year. These findings collectively indicate that the thorny skate is reproductively active year round

    The reproductive cycle of the thorny skate (Amblyraja radiata) in the western Gulf of Maine

    Get PDF
    The thorny skate (Amblyraja radiata) is a large species of skate that is endemic to the waters of the western north Atlantic in the Gulf of Maine. Because the biomass of thorny skates has recently declined below threshold levels mandated by the Sustainable Fisheries Act, commercial harvests from this region are prohibited. We have undertaken a comprehensive study to gain insight into the life history of this skate. The present study describes and characterizes the reproductive cycle of female and male thorny skates, based on monthly samples taken off the coast of New Hampshire, from May 2001 to May 2003. Gonadosomatic index (GSI), shell gland weight, follicle size, and egg case formation, were assessed for 48 female skates. In general, these reproductive parameters remained relatively constant throughout most of the year. However, transient but significant increases in shell gland weight and GSI were obser ved during certain months. Within the cohort of specimens sampled monthly throughout the year, a subset of females always had large preovulatory follicles present in their ovaries. With the exception of June and September specimens, egg cases undergoing various stages of development were observed in the uteri of specimens captured during all other months of the year. For males (n=48), histological stages III through VI (SIII−SVI) of spermatogenesis, GSI, and hepatosomatic index (HSI) were examined. Although there appeared to be monthly fluctuations in spermatogenesis, GSI, and HSI, no significant differences were found. The production and maintenance of mature spermatocysts (SVI) within the testes was observed throughout the year. These findings collectively indicate that the thorny skate is reproductively active year round

    Age and growth estimates of the thorny skate (Amblyraja radiata) in the western Gulf of Maine

    Get PDF
    The northwest Atlantic population of thorny skates (Amblyraja radiata) inhabits an area that ranges from Greenland and Hudson Bay, Canada, to South Carolina. Despite such a wide range, very little is known about most aspects of the biology of this species. Recent stock assessment studies in the northeast United States indicate that the biomass of the thorny skate is below the threshold levels mandated by the Sustainable Fisheries Act. In order to gain insight into the life history of this skate, we estimated age and growth for thorny skates, using vertebral band counts from 224 individuals ranging in size from 29 to 105 cm total length (TL). Age bias plots and the coefficient of variation indicated that our aging method represents a nonbiased and precise approach for the age assessment of A. radiata. Marginal increments were significantly different between months (Kruskal-Wallis P<0.001); a distinct trend of increasing monthly increment growth began in August. Age-at-length data were used to determine the von Bertalanffy growth parameters for this population: L∞ = 127 cm (TL) and k= 0.11 for males; L∞ = 120 cm (TL) and k= 0.13 for females. The oldest age estimates obtained for the thorny skate were 16 years for both males and females, which corresponded to total lengths of 103 cm and 105 cm, respectively

    Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be Reprogrammed with Folate-Targeted Drugs

    Get PDF
    Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRβ) within the TME and its restriction to the TME. This FRβ+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRβ as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors

    Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge

    No full text
    Collagen exposure in tissue activates platelets, initiates wound healing, and modulates adaptive immunity. In this report, data are presented to demonstrate a requirement for platelet-derived CD154 for both collagen-induced augmentation of T-cell immunity and induction of pro-tective immunity to Listeria challenge. Specifically, we demonstrate that Ad5 encoding the membrane-bound form of ovalbumin (Ad5-mOVA) delivered in collagen induces higher ovalbumin-specific cytotoxic T lymphocyte (CTL) activity in a dose-dependent manner compared with Ad5-mOVA delivered in PBS. Increased CTL activity was dependent on the ability of platelets to respond to collagen and to express CD154. Furthermore, mice immunized with low-dose Ad5-mOVA in collagen were able to control a challenge of Listeria monocytogenes recombinant for ovalbumin expression (Lm-OVA), whereas mice immunized with low-dose Ad5-mOVA in PBS were not. These data indicate that in a physiologic setting that mimics wounding, platelets perform a sentinel function when antigen dose is too low to provoke an efficient immune response, and can enhance the generation of antigen-specific CD8 T cells that are functionally relevant to the host
    corecore