27 research outputs found

    Potential of a sequence-based antigenic distance measure to indicate equine influenza vaccine strain efficacy

    Get PDF
    The calculation of pepitope values, a sequence-based measure of antigenic distance between strains, was developed for human influenza. The potential to apply the pepitope value to equine influenza vaccine strain selection was assessed. There was a negative correlation between pepitope value and vaccine efficacy for pairs of vaccine and challenge strains used in cross-protection studies in ponies that just reached statistical significance (p = 0.046) only if one pair of viruses was excluded from the analysis. Thus the pepitope value has potential to provide additional data to consider in the decision-making process for updating equine influenza vaccine strains. However, further work is required to define the epitopes of the equine H3N8 haemagglutinin protein recognised by equine antibodies, which could lead to refinement of the pepitope value calculation. Furthermore, other factors such as vaccine potency and virulence of circulating strains may also influence vaccine efficacy

    The genetics of virus particle shape in equine influenza A virus

    Get PDF
    Background Many human strains of influenza A virus produce highly pleomorphic virus particles that at the extremes can be approximated as either spheres of around 100 nm diameter or filaments of similar cross-section but elongated to lengths of many microns. The role filamentous virions play in the virus life cycle remains enigmatic. Objectives/Methods Here, we set out to define the morphology and genetics of virus particle shape in equine influenza A virus, using reverse genetics and microscopy of infected cells. Results and Conclusions The majority of H3N8 strains tested were found to produce filamentous virions, as did the prototype H7N7 A/eq/Prague/56 strain. The exception was the prototype H3N8 isolate, A/eq/Miami/63. Reassortment of equine influenza virus M genes from filamentous and non-filamentous strains into the non-filamentous human virus A/PR/8/34 confirmed that segment 7 is a major determinant of particle shape. Sequence analysis identified three M1 amino acid polymorphisms plausibly associated with determining virion morphology, and the introduction of these changes into viruses confirmed the importance of two: S85N and N231D. However, while either change alone affected filament production, the greatest effect was seen when the polymorphisms were introduced in conjunction. Thus, influenza A viruses from equine hosts also produce filamentous virions, and the major genetic determinants are set by the M1 protein. However, the precise sequence determinants are different to those previously identified in human or porcine viruses

    Comparison of two modern vaccines and previous influenza infection against challenge with an equine influenza virus from the Australian 2007 outbreak

    Get PDF
    During 2007, large outbreaks of equine influenza (EI) caused by Florida sublineage Clade 1 viruses affected horse populations in Japan and Australia. The likely protection that would be provided by two modern vaccines commercially available in the European Union (an ISCOM-based and a canarypox-based vaccine) at the time of the outbreaks was determined. Vaccinated ponies were challenged with a representative outbreak isolate (A/eq/Sydney/2888-8/07) and levels of protection were compared. A group of ponies infected 18 months previously with a phylogenetically-related isolate from 2003 (A/eq/South Africa/4/03) was also challenged with the 2007 outbreak virus. After experimental infection with A/eq/Sydney/2888-8/07, unvaccinated control ponies all showed clinical signs of infection together with virus shedding. Protection achieved by both vaccination or long-term immunity induced by previous exposure to equine influenza virus (EIV) was characterised by minor signs of disease and reduced virus shedding when compared with unvaccinated control ponies. The three different methods of virus titration in embryonated hens’ eggs, EIV NP-ELISA and quantitative RT-PCR were used to monitor EIV shedding and results were compared. Though the majority of previously infected ponies had low antibody levels at the time of challenge, they demonstrated good clinical protection and limited virus shedding. In summary, we demonstrate that vaccination with current EIV vaccines would partially protect against infection with A/eq/Sydney/2888-8/07-like strains and would help to limit the spread of disease in our vaccinated horse population

    Codon conservation in the influenza A virus genome defines RNA packaging signals

    Get PDF
    Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses

    Development of a surveillance scheme for equine influenza in the UK and characterisation of viruses isolated in Europe, Dubai and the USA from 2010-2012

    Get PDF
    Equine influenza viruses are a major cause of respiratory disease in horses worldwide and undergo antigenic drift. Several outbreaks of equine influenza occurred worldwide during 2010-2012, including in vaccinated animals, highlighting the importance of surveillance and virus characterisation. Virus isolates were characterised from more than 20 outbreaks over a 3-year period, including strains from the UK, Dubai, Germany and the USA. The haemagglutinin-1 (HA1) sequence of all isolates was determined and compared with OIE-recommended vaccine strains. Viruses from Florida clades 1 and 2 showed continued divergence from each other compared with 2009 isolates. The antigenic inter-relationships among viruses were determined using a haemagglutination-inhibition (HI) assay with ferret antisera and visualised using antigenic cartography. All European isolates belonged to Florida clade 2, all those from the USA belonged to Florida clade 1. Two subpopulations of clade 2 viruses were isolated, with either substitution A144V or I179V. Isolates from Dubai, obtained from horses shipped from Uruguay, belonged to Florida clade 1 and were similar to viruses isolated in the USA the previous year. The neuraminidase (NA) sequence of representative strains from 2007 and 2009 to 2012 was also determined and compared with that of earlier isolates dating back to 1963. Multiple changes were observed at the amino acid level and clear distinctions could be made between viruses belonging to Florida clade 1 and clade 2

    Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway

    Get PDF
    The mechanism of membrane scission during influenza A virus budding has been the subject of controversy. We confirm that influenza M1 binds VPS28, a subunit of the ESCRT-1 complex. However, confocal microscopy of infected cells showed no marked colocalisation between M1 and VPS28 or VPS4 ESCRT proteins, or relocalisation of the cellular proteins. Trafficking of HA and M1 appeared normal when endosomal sorting was impaired by expression of inactive VPS4. Overexpression of either isoform of VPS28 or wildtype or dominant negative VPS4 proteins did not alter production of filamentous virions. SiRNA depletion of endogenous VPS28 had no significant effect on influenza virus replication. Furthermore, cells expressing wildtype or dominant-negative VPS4 replicated filamentous and non-filamentous strains of influenza to similar titres, indicating that influenza release is VPS4-independent. Overall, we see no role for the ESCRT pathway in influenza virus budding and the significance of the M1-VPS28 interaction remains to be determined. (C) 2009 Elsevier Inc. All rights reserved

    Evolution of an Eurasian Avian-like Influenza Virus in Naïve and Vaccinated Pigs

    Get PDF
    Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore