110 research outputs found

    Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores

    Get PDF
    The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then

    Late Holocene climate: Natural or anthropogenic?

    Get PDF
    For more than a decade, scientists have argued about the warmth of the current interglaciation. Was the warmth of the preindustrial late Holocene natural in origin, the result of orbital changes that had not yet driven the system into a new glacial state? Or was it in considerable degree the result of humans intervening in the climate system through greenhouse gas emissions from early agriculture? Here we summarize new evidence that moves this debate forward by testing both hypotheses. By comparing late Holocene responses to those that occurred during previous interglaciations (in section 2), we assess whether the late Holocene responses look different (and thus anthropogenic) or similar (and thus natural). This comparison reveals anomalous (anthropogenic) signals. In section 3, we review paleoecological and archaeological syntheses that provide ground truth evidence on early anthropogenic releases of greenhouse gases. The available data document large early anthropogenic emissions consistent with the anthropogenic ice core anomalies, but more information is needed to constrain their size. A final section compares natural and anthropogenic interpretations of the δ13C trend in ice core CO2

    Multi vegetation model evaluation of the Green Sahara climate regime

    Get PDF
    During the Quaternary, the Sahara desert was periodically colonized by vegetation, likely because of orbitally induced rainfall increases. However, the estimated hydrological change is not reproduced in climate model simulations, undermining confidence in projections of future rainfall. We evaluated the relationship between the qualitative information on past vegetation coverage and climate for the mid-Holocene using three different dynamic vegetation models. Compared with two available vegetation reconstructions, the models require 500–800 mm of rainfall over 20°–25°N, which is significantly larger than inferred from pollen but largely in agreement with more recent leaf wax biomarker reconstructions. The magnitude of the response also suggests that required rainfall regime of the early to middle Holocene is far from being correctly represented in general circulation models. However, intermodel differences related to moisture stress parameterizations, biases in simulated present-day vegetation, and uncertainties about paleosoil distributions introduce uncertainties, and these are also relevant to Earth system model simulations of African humid periods
    corecore