47 research outputs found

    JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    Get PDF
    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches

    The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences

    Get PDF
    The PAZAR database unites independently created and maintained data collections of transcription factor and regulatory sequence annotation. The flexible PAZAR schema permits the representation of diverse information derived from experiments ranging from biochemical protein–DNA binding to cellular reporter gene assays. Data collections can be made available to the public, or restricted to specific system users. The data ‘boutiques’ within the shopping-mall-inspired system facilitate the analysis of genomics data and the creation of predictive models of gene regulation. Since its initial release, PAZAR has grown in terms of data, features and through the addition of an associated package of software tools called the ORCA toolkit (ORCAtk). ORCAtk allows users to rapidly develop analyses based on the information stored in the PAZAR system. PAZAR is available at http://www.pazar.info. ORCAtk can be accessed through convenient buttons located in the PAZAR pages or via our website at http://www.cisreg.ca/ORCAtk

    Non-Coding-Regulatory Regions Of Human Brain Genes Delineated By Bacterial Artificial Chromosome Knock-In Mice

    Get PDF
    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX (\u27high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression

    The BC SUPPORT Unit Data Platform: Offering Data-Related Services To Researchers In British Columbia

    Get PDF
    Introduction The Canadian Institutes of Health Research (CIHR) and provinces co-fund local Units to increase the quality and quantity of patient-oriented research. These SUPPORT (Support for People and Patient-Oriented Research and Trials) Units include a prominent Data Plan component. The BC Plan is the result of collaboration between many organizational partners. Objectives and Approach A Data Advisory Committee comprised of eight organizational partners worked together for several months in 2016-2017 to develop BC’s provincial Data Plan. The Data Plan includes seven objectives; in general, the plan seeks to make additional data available for research, increase the speed and transparency of data access, and offer services to enable more efficient data use. The services resulting from the Data Plan are intended to improve support for the entire continuum of a research project, from developing a research question to analyzing the results. Several projects are part of Ministry of Health-led work developing a Health Data Platform. Results The projects initiated so far as part of the Data Plan include: • BC Data Scout\textsuperscript{TM}: an online tool that provides aggregate cohort information to inform research question development; • REDCap: software to support privacy-sensitive data collection and management; • INFORM: software to support data collection for complex clinical research studies and trials; • Direct Access: enables Population Data BC to access BC Ministry of Health databases so researchers have access to up-to-date data; • Streamlining: making the data request process more efficient; • New datasets: several projects that will provide new data sources, including patient experience and outcome measures and secondary use data drawn from electronic medical records; and • Inventory: an online catalog for all high-value and linkable data sets available to researchers. Conclusion/Implications The services and tools included in BC’s Data Plan will help researchers develop and deliver world-class research and inform important health care decisions. The patient-oriented focus of these services help to ensure that research is done in partnership with patients and centered on research questions that matter to them

    Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis

    Get PDF
    The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1−/−) or depletion (Nrf2−/−) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response

    rAAV-compatible MiniPromoters for restricted expression in the brain and eye

    Get PDF
    Abstract Background Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters–however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. Methods For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were “cut down” to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. Results The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. Conclusions Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy

    Identification et caractérisation de nouvelles isoformes du Rho-GEF Trio

    No full text
    MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Sharing with More Caring: Coordinating and Improving the Ethical Governance of Data and Biomaterials Obtained from Children.

    No full text
    Research on complex health conditions such as neurodevelopmental disorders increasingly relies on large-scale research and clinical studies that would benefit from data sharing initiatives. Organizations that share data stand to maximize the efficiency of invested research dollars, expedite research findings, minimize the burden on the patient community, and increase citation rates of publications associated with the data.This study examined ethics and governance information on websites of databases involving neurodevelopmental disorders to determine the availability of information on key factors crucial for comprehension of, and trust and participation in such initiatives.We identified relevant databases identified using online keyword searches. Two researchers reviewed each of the websites and identified thematic content using principles from grounded theory. The content for each organization was interrogated using the gap analysis method.Sixteen websites from data sharing organizations met our inclusion criteria. Information about types of data and tissues stored, data access requirements and procedures, and protections for confidentiality were significantly addressed by data sharing organizations. However, special considerations for minors (absent from 63%), controls to check if data and tissues are being submitted (absent from 81%), disaster recovery plans (absent from 81%), and discussions of incidental findings (absent from 88%) emerged as major gaps in thematic website content. When present, content pertaining to special considerations for youth, along with other ethics guidelines and requirements, were scattered throughout the websites or available only from associated documents accessed through live links.The complexities of sharing data acquired from children and adolescents will only increase with advances in genomic and neuro science. Our findings suggest that there is a need to improve the consistency, depth and accessibility of governance and policies on which these collaborations can lean specifically for vulnerable young populations

    Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression

    Get PDF
    Background: DNA methylation is thought to play an important role in the regulation of mammalian gene expression, partly based on the observation that a lack of CpG island methylation in gene promoters is associated with high transcriptional activity. However, the CpG island methylation level only accounts for a fraction of the variance in gene expression, and methylation in other domains is hypothesized to play a role. We hypothesized that regions of very high stability in methylation would exist and provide biological insight into the role of methylation both within and outside CpG islands. Results: We set out to identify highly stable regions in the human methylome, based on the subset of CpGs assayed with an Illumina Infinium 450 K array. Using 1,737 samples from 30 publically available studies, we identified 15,224 CpGs that are ‘ultrastable’ in their state across tissues and developmental stages (974 always methylated; 14,250 always unmethylated). Further analysis of ultrastable CpGs led us to identify a novel subset of CpG islands, ‘ravines’, which exhibit a markedly consistent pattern of low methylation with highly methylated flanking shores and shelves. We distinguish ravines from other CpG islands characterized by a broader flanking region of low methylation. Interestingly, ravines are associated with higher gene expression compared to typical unmethylated CpG islands, and are more often found near housekeeping genes. Conclusions: The identification of ultrastable sites in the human methylome led us to identify a subclass of CpG islands characterized by a very stable pattern of methylation encompassing the island and flanking regions, established early in development and maintained through differentiation. This pattern is associated with particularly high levels of gene expression, providing new evidence that methylation beyond the CpG island could play a role in gene expression.Graduate and Postdoctoral StudiesMedicine, Faculty ofPsychiatry, Department ofOther UBCReviewedFacult
    corecore