47 research outputs found

    Open-source workflow approaches to passive acoustic monitoring of bats

    Get PDF
    The work was funded by grants to PTM from Carlsberg Semper Ardens Research Projects and the Independent Research Fund Denmark.The affordability, storage and power capacity of compact modern recording hardware have evolved passive acoustic monitoring (PAM) of animals and soundscapes into a non-invasive, cost-effective tool for research and ecological management particularly useful for bats and toothed whales that orient and forage using ultrasonic echolocation. The use of PAM at large scales hinges on effective automated detectors and species classifiers which, combined with distance sampling approaches, have enabled species abundance estimation of toothed whales. But standardized, user-friendly and open access automated detection and classification workflows are in demand for this key conservation metric to be realized for bats. We used the PAMGuard toolbox including its new deep learning classification module to test the performance of four open-source workflows for automated analyses of acoustic datasets from bats. Each workflow used a different initial detection algorithm followed by the same deep learning classification algorithm and was evaluated against the performance of an expert manual analyst. Workflow performance depended strongly on the signal-to-noise ratio and detection algorithm used: the full deep learning workflow had the best classification accuracy (≤67%) but was computationally too slow for practical large-scale bat PAM. Workflows using PAMGuard's detection module or triggers onboard an SM4BAT or AudioMoth accurately classified up to 47%, 59% and 34%, respectively, of calls to species. Not all workflows included noise sampling critical to estimating changes in detection probability over time, a vital parameter for abundance estimation. The workflow using PAMGuard's detection module was 40 times faster than the full deep learning workflow and missed as few calls (recall for both ~0.6), thus balancing computational speed and performance. We show that complete acoustic detection and classification workflows for bat PAM data can be efficiently automated using open-source software such as PAMGuard and exemplify how detection choices, whether pre- or post-deployment, hardware or software-driven, affect the performance of deep learning classification and the downstream ecological information that can be extracted from acoustic recordings. In particular, understanding and quantifying detection/classification accuracy and the probability of detection are key to avoid introducing biases that may ultimately affect the quality of data for ecological management.Publisher PDFPeer reviewe

    Evolutionary history and species delimitations: a case study of the hazel dormouse, Muscardinus avellanarius

    Get PDF
    Robust identification of species and significant evolutionary units (ESUs) is essential to implement appropriate conservation strategies for endangered species. However, definitions of species or ESUs are numerous and sometimes controversial, which might lead to biased conclusions, with serious consequences for the management of endangered species. The hazel dormouse, an arboreal rodent of conservation concern throughout Europe is an ideal model species to investigate the relevance of species identification for conservation purposes. This species is a member of the Gliridae family, which is protected in Europe and seriously threatened in the northern part of its range. We assessed the extent of genetic subdivision in the hazel dormouse by sequencing one mitochondrial gene (cytb) and two nuclear genes (BFIBR, APOB) and genotyping 10 autosomal microsatellites. These data were analysed using a combination of phylogenetic analyses and species delimitation methods. Multilocus analyses revealed the presence of two genetically distinct lineages (approximately 11 % cytb genetic divergence, no nuclear alleles shared) for the hazel dormouse in Europe, which presumably diverged during the Late Miocene. The phylogenetic patterns suggests that Muscardinus avellanarius populations could be split into two cryptic species respectively distributed in western and central-eastern Europe and Anatolia. However, the comparison of several species definitions and methods estimated the number of species between 1 and 10. Our results revealed the difficulty in choosing and applying an appropriate criterion and markers to identify species and highlight the fact that consensus guidelines are essential for species delimitation in the future. In addition, this study contributes to a better knowledge about the evolutionary history of the species

    Re‐weighing the 5% tagging recommendation: assessing the potential impacts of tags on the behaviour and body condition of bats

    Get PDF
    Considerable advances and breakthroughs in wildlife tracking technology have occurred in recent years, allowing researchers to gain insights into the movements and behaviours of a broad range of animals. Considering the accessibility and increase in use of tracking devices in wildlife studies, it is important to better understand the effects on these on animals. Our endeavour revisits a guideline established in 1988, which proposes that bats may encounter body condition or health problems and alter their behaviour when carrying tags weighing more than 5% of their body mass. Through a systematic literature review, we conducted a meta‐analysis to identify the impacts of tags on bats, including 367 papers from 1976 to 2023 that discussed, mentioned, employed, or quantified tagging of bats. We noted that the proportion of studies exceeding the 5% rule has not changed in recent years. However, the impact of tags was quantified in few studies for behaviour (n = 7) and body condition (n = 10) of bats. We were unable to assess whether tags weighing less or more than 5% of the bat's body mass impacted bats, but our meta‐analysis did identify that tags, irrespective of mass, affect the behaviour and body condition of bats. Although the overall magnitude of measured effects of tags on bats was small, progress has been made to advance our understanding of tag mass on bats. Naturally, there is a bias in reporting of significant results, illustrating the need of reporting results when there is no apparent effect of tags on bats. Our findings highlight the need for rigorous reporting of behaviour and body condition data associated with tagging of animals and illustrate the importance for studies comparing how tracking devices of different dimensions and masses may impact bat species to ensure research meets rigorous ethical standards

    Adverse Outcome Pathway and Risks of Anticoagulant Rodenticides to Predatory Wildlife

    Full text link
    corecore