1,649 research outputs found

    Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons

    Get PDF
    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz) - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca(2+)-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca(2+)-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca(2+)-dependent resonance that peaked in the theta and alpha frequency range (4-14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca(2+) dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma

    Investigating the relationship between eye movements and situation awareness in weather forecasting

    Get PDF
    Physiological indicators, including eye tracking measures, may provide insight into human decision making and cognition in many domains, including weather forecasting. Situation awareness (SA), a critical component of forecast decision making, is commonly conceptualized as the degree to which information is perceived, understood, and projected into a future context. Drawing upon recent applications of eye tracking in the study of forecaster decision making, we investigate the relationship among eye movement measures, automation, and SA assessed through a freeze probe assessment method. In addition, we explore the relationship between an automated forecasting decision aid use and information seeking behavior.In this study, a sample of professional weather forecasters completed a series of tasks, informed by a set of forecasting decision aids, and with variable access to an experimental automated tool, while an eye tracking system captured data related to eye movements and information usage. At the end of each forecasting task, participants responded to a set of questions related to the environmental situation in the framework of a survey-based assessment technique in order to assess their level of situation awareness. Regression analysis revealed a moderate relationship between the SA measure and eye tracking metrics, supporting the hypothesis that eye tracking may have utility in assessing SA. The results support the use of eye tracking in the assessment of specific and measurable attributes of the decision-making process in weather forecasting. The findings are discussed in light of potential benefits that eye tracking could bring to human performance assessment as well as decision-making research in the forecasting domain

    The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

    Get PDF
    PMCID: PMC3410907This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Full breastfeeding protection against common enteric bacteria and viruses: Results from the MAL-ED cohort study

    Get PDF
    Background: Breastfeeding is known to reduce risk of enteropathogen infections, but protection from specific enteropathogens is not well characterized.Objective: To estimate the association between full breastfeeding (days fed breast milk exclusively or with non-nutritive liquids) and enteropathogen detection.Design: 2,145 newborns were enrolled in eight sites, of whom 1,712 had breastfeeding and key enteropathogen data through 6 months. We focused on eleven enteropathogens: adenovirus 40/41, norovirus, sapovirus, astrovirus, and rotavirus, enterotoxigenic Escherichia coli (ETEC), Campylobacter spp, and typical enteropathogenic E. coli as well as entero-aggregative E. coli, Shigella and Cryptosporidium. Logistic regression was used to estimate the risk of enteropathogen detection in stools and survival analysis to estimate the timing of first detection of an enteropathogen.Results: Infants with 10% more days of full breastfeeding within the preceding 30 days of a stool sample were less likely to have the three E. Coli and Campylobacter spp detected in their stool (mean odds 0.92-0.99) but equally likely (0.99-1.02) to have the viral pathogens detected in their stool. A 10% longer period of full breastfeeding from birth was associated with later first detection of the three E. Coli, Campylobacter, adenovirus, astrovirus, and rotavirus (mean hazard ratios of 0.52-0.75). The hazards declined and point estimates were not statistically significant at 3 months.Conclusions: In this large multi-center cohort study, full breastfeeding was associated with lower likelihood of detecting four important enteric pathogens in the first six months of life. These results also show that full breastfeeding is related to delays in the first detection of some bacterial and viral pathogens in the stool. As several of these pathogens are risk factors for poor growth during childhood, this work underscores the importance of exclusive or full breastfeeding during the first six months of life to optimize early health

    Measurement of the Lifetime Difference Between B_s Mass Eigenstates

    Get PDF
    We present measurements of the lifetimes and polarization amplitudes for B_s --> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B_s system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07 +{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s and average Gamma_s, of the decay rates of the two eigenstates, the results are DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47 +{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters on 16 March 2005; revisions are for length and typesetting only, no changes in results or conclusion
    corecore