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ABSTRACT 

Physiological indicators, including eye tracking measures, may provide insight into human decision 

making and cognition in many domains, including weather forecasting.  Situation awareness (SA), a critical 

component of forecast decision making, is commonly conceptualized as the degree to which information is 

perceived, understood, and projected into a future context.  Drawing upon recent applications of eye tracking in 

the study of forecaster decision making, we investigate the relationship among eye movement measures, 

automation, and SA assessed through a freeze probe assessment method.  In addition, we explore the relationship 

between an automated forecasting decision aid use and information seeking behavior. 

In this study, a sample of professional weather forecasters completed a series of tasks, informed by a set 

of forecasting decision aids, and with variable access to an experimental automated tool, while an eye tracking 

system captured data related to eye movements and information usage.  At the end of each forecasting task, 

participants responded to a set of questions related to the environmental situation in the framework of a survey-

based assessment technique in order to assess their level of situation awareness.  Regression analysis revealed a 

moderate relationship between the SA measure and eye tracking metrics, supporting the hypothesis that eye 

tracking may have utility in assessing SA.  The results support the use of eye tracking in the assessment of specific 

and measurable attributes of the decision-making process in weather forecasting.  The findings are discussed in 

light of potential benefits that eye tracking could bring to human performance assessment as well as decision-

making research in the forecasting domain. 

 

Keywords: situation awareness, human factors, assessment, eye tracking, weather forecasting 
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1. INTRODUCTION 

The weather forecasting domain exemplifies the definition of a sociotechnical system with competing 

cognitive demands, and maintaining situation awareness (SA) is considered to be one critical aspect of forecasting 

(Quoetone et al. 2001; Endsley & Hoffman, 2002). The United States’ National Weather Service’s definition 

aligns with the Endsley 1995 model which frames SA in three stages: perception, comprehension, and projection 

of the current environmental state into a future state (Endsley, 1995b). Forecasters perceive and integrate 

information into a situational model upon which they base decisions, and should the model be inaccurate or 

incomplete, the forecast’s spatial accuracy and timeliness may suffer, increasing the potential for negative societal 

impacts (Quoetone et al., 2001).  Furthermore, as workplaces become increasingly automated, it is growing ever 

more important to ensure that automation is designed to support end users in developing and maintaining their 

situation awareness while reducing cognitive demand and out-of-the-loop decision making. Automation in the 

workplace affects task performance and decision-making within a variety of domains (Dao et al., 2009; Endsley 

& Kiris, 1995).  In the weather forecasting domain, decision support automation may have potential to reduce 

time-consuming situation assessment activities within the forecasting process.  While some evidence indicated 

that an early version of a forecasting automation tool did not significantly reduce forecaster workload (Karstens 

et al., 2015), this work hypothesized that automation would affect situation assessment and forecasters’ levels of 

SA during a flash flood forecasting task. 

In the search for objective, minimally distracting measures of human cognition, eye movement analysis 

has emerged as one such innovative solution (Moore & Gugerty, 2010; van de Merwe et al., 2012; Sturre et al., 

2015). Traditionally, eye tracking has been employed in usability and human-computer interaction studies (Poole 

& Ball, 2006), but recent work has explored the technique’s efficacy for cognitive-behavioral assessment (Wilson 

et al, 2016; Yu et al., 2016; McClung & Kang, 2016). Studying air traffic controllers, Moore and Gugerty (2010) 

identified an inverse relationship between error rate and the number of eye fixations, while also observing that 

eye fixations within an area of interest was the strongest predictor of overall awareness. Building upon previous 

research in this area, this work investigates the relationship between eye movements and situation awareness (SA) 

in weather forecasting. As physiological sensing technologies reach maturity, studies have demonstrated that such 

techniques may offer insight into aspects of human performance and cognition, such as workload (Heine et al., 

2017; Marinescu et al., 2018) and SA (Moore & Gugerty, 2010; Catherwood et al., 2014; Ikuma et al., 2014; 

Wilson et al. 2016). Being able to assess SA in situ, objectively and with minimal disruption, could contribute to 

improved human-system integration, training development, and an enhanced understanding of behavioral patterns 
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in forecasting. However, before this can be implemented in an operational setting, it is necessary for research to 

verify and validate physiological methods against these purposes. 

Physiological measures can complement a number of SA assessment techniques, ranging from probe-

based techniques, subjective rating approaches, and observational methods.  Probe-based methods, such as the 

Situation Awareness Global Assessment Technique (SAGAT; Endsley, 1995a) and the Situation Present 

Assessment Method (SPAM; Pierce, 2012; Loft, Morrell, & Huf, 2013) evaluate SA against a predefined ground 

truth and reflect it as accuracy-based and time-based measures, respectively.  However, while several probe- and 

rating-based approaches have been validated in laboratory settings, some work has found these to be effective 

only in controlled environments (Moore & Gugerty, 2010).  Compared to probe-based or ratings-based techniques, 

eye tracking may provide a more direct way to evaluate SA (Adams et al., 1995).  Furthermore, in environments 

where maintaining SA is critical, measures that reduce workplace interruption may improve assessment accuracy 

and operational safety. 

Several studies have indicated that eye tracking may assess SA in other domains (Moore & Gugerty, 

2010; van de Merwe et al., 2012; Yu et al., 2014), but to the authors’ knowledge, the current work is the first to 

examine the relationship in the weather forecasting domain. Secondly, we explored differences in information 

usage when forecasters were exposed to an automated decision support tool. In previous work, Wilson et al. (2016) 

first demonstrated that forecaster eye movement data could reveal components of the forecast decision making 

process in terms of information scanning. Similarly, Wilson et al. (2017) employed eye tracking to capture 

scanning behavior during a workload assessment comparing multiple radar analysis tasks. Complementing and 

extending previous research, the current work investigated the relationship between eye tracking data and situation 

awareness in order to assess its utility for future in situ evaluations.  Furthermore, the combination of probe-based 

assessment and eye tracking contributes to a deeper understanding of how graphical attention-directing 

mechanisms affect forecaster SA and information scanning. 

In line with these hypothesis, the primary objective of this research was to explore the relationship 

between automation usage, eye movements, and SA (RQ1, RQ2): 

RQ1:  How is SA influenced by forecasting automation at different levels during a weather forecasting 

task? 

RQ2: What is the effect of automation availability and decision aid use on total fixation duration, mean 

fixation count, and inter-AOI glances? 
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 In addition, in order to assess SA during automation use, this work employed eye tracking to capture data 

related to participants’ information-seeking behaviors.  To date, the literature contains only a small number of 

studies that intersect eye tracking, weather forecasting, and situation awareness. As such, the secondary research 

aim was to evaluate the relationship between eye tracking measures and SA assessment. Existing work suggests 

a positive relationship between eye tracking measures, SA, and decision making, but this has been explored in 

weather forecasting to a much lesser degree (Moore & Gugerty, 2010; Sturre, Chiappe, Vu, & Strybel, 2015; van 

de Merwe, van Dijk, & Zon, 2012; Yu, Wang, Li, & Braithwaite, 2014). In a study of air traffic controllers, Moore 

and Gugerty (2010) found that participants with high levels of SA fixated on relevant areas of the information 

display more frequently than their counterparts with lower SA.  Likewise, we aim to assess the suitability of eye 

tracking measures in relation to predicting SA in flash flood forecasting (RQ3): 

RQ3:  To what degree are eye tracking measures able to predict situation awareness? 

 

2. METHOD 

2.1 Participants 

Eighteen expert participants were recruited from NWS Forecast Offices, River Forecaster Centers, and 

other NWS Centers in the central United States.  All participants had experience working in professional 

forecasting with a mean of 19.3 years of professional weather forecasting experience (σ = 7.95) and a mean of 

14.6 years of hydrologic forecasting experience (σ = 7.25).  Due to the nature of the study, it was preferable, 

though not mandatory, for participants to have specialized in hydrologic forecasting. The study was approved by 

the University of Oklahoma’s Institutional Review Board. 

2.2 Experimental Design 

The study employed a two-factor, within-subjects design to assess the relationship among eye tracking, 

automation, and SA in flash flood forecasting.  The primary independent variable was the availability of a 

forecasting decision support automation, which was presented in two levels (available or unavailable), while the 

secondary independent variable was the forecasting guidance product (Table 1).  The dependent variables included 

an estimate of participant SA and eye tracking measures including number of fixations, total fixation duration and 

the proportion of inter-AOI glances captured in an area of interest (AOI) analysis.  In this type of analysis, the 

researcher defines geometric regions of the display (AOIs), and software then quantifies eye movement metrics 

that occur within the areas (Poole and Ball, 2006).  An additional benefit of AOI analysis is that it permits the 

researcher to compare participant interactions with different components of a display. 
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The eye tracking dependent variables (total fixation duration per AOI and mean number of fixations per 

AOI) were dependent upon assignment of Areas of Interest (AOIs), corresponding to the forecast guidance 

products, described in Table 1. Total fixation duration refers to the amount of time a participant fixated within an 

AOI over the entire recording period.  The number of fixations variable measures the frequency of fixations within 

an AOI.  This parameter can indicate the salience or relative importance of an AOI to a decision maker; AOIs 

with a greater number of fixations may attract a user’s attention to a greater degree (Poole and Ball, 2006).  Using 

the Tobii Pro Studio analysis software, four AOIs were evaluated, as shown in Figure 1. 

Table 1. Forecasting guidance products available to participants 

Decision Aid (Abbreviation) Units Description 

CREST Unit Streamflow 
(USF) 

m3s-1km-2 (cubic meters 
per second per square 
kilometer) 

Simulated surface water flows 
normalized by drainage area, 
selected from a span of 0.5 – 6 
hours after the valid time 

Average Recurrence 
Interval (ARI) 

Years Generates a return period based 
on precipitation rate and historical 
return periods. Higher return 
periods correspond to higher 
likelihood of flooding. 

QPE-to-FFG Ratio (FFG) N/A Calculates ratio by comparing 
Flash Flood Guidance grid values 
against MRMS radar precipitation 
rates.  Bankfull conditions may 
exist when the ratio exceeds 1.0. 

MRMS Composite 
Reflectivity (MRMS) 

dBZ (decibel relative to 
Z) 

Mosaic of reflectivity values 
measured by MRMS radars across 
the CONUS. 

 

 



 

7 

 

 

 

Figure 1. Areas of interest (AOIs) used during the analysis 

2.3 Materials 

2.3.1 Scenarios.  Three scenarios were selected from flash flood reports in the NOAA Storm Data 

publication between May and July 2015 (available online from https://www.ncdc.noaa.gov/IPS/sd/sd.html).  Each 

scenario consisted of a set of dynamic forecasting visualizations spanning two consecutive four-hour timeframes 

coinciding with the valid times of operational flash flood warnings issued by local National Weather Service 

(NWS) Forecast Offices.  The timeframes involved real-world flooding events that took place in New Jersey (31 

May 2015 21:30 UTC to 1 June 2015 01:30 UTC), southern Indiana (12 July 2015 06:00 to 10:00 UTC), and 

northern Kentucky (14 July 2015 19:00 to 23:00 UTC).  In addition to operational warnings, historical reports 

from United States Geological Survey (USGS) stream gages were assessed during the timeframes.  Selecting 

timeframes that overlapped with gages that reached flood stage provided a more objective way to verify existence 

of a flash flood than selecting timeframes based on NWS verified storm reports alone. 

2.3.2 Forecast Guidance Products.  The guidance products, described in Table 1, were presented with the 

Advanced Weather Interactive Processing System II (AWIPS-II), a computer visualization display platform used 

operationally within the NWS.  The display was divided into four panels with one visualization per quadrant.  

Participants could not change the arrangement of the panels, the type of guidance products, or the visualizations’ 

color palettes.  However, they were permitted to zoom within and pan across the visualizations. 

https://www.ncdc.noaa.gov/IPS/sd/sd.html
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It was anticipated that participants would have varying levels of experience with the guidance products.  

For example, Multi-Radar/Multi-Sensor composite reflectivity radar imagery (MRMS) and the Quantitative 

Precipitation Estimate to Flash Flood Guidance (QPE-to-FFG) ratio product are both frequently used in 

operational environments, and as such should be familiar to forecasters.  Conversely, the Average Recurrence 

Interval (ARI) and unit streamflow (USF) products were in-development and was not included in operational 

NWS information displays at the time of this work.  Thus, it was anticipated that fewer forecasters would have 

experience using these products.  For a technical discussion of the forecast guidance products, see Gourley et al. 

(2017). 

2.3.3 Automation Design.  Simulating an attention-directing guidance product, the present automation 

was a single-input threshold-exceedance parameter.  Here, the QPE-to-FFG Ratio visualization provided the 

underlying model input, and the exceedance algorithm was based on a 1.0 ratio threshold.  In operation, the 

automated product constructed white polygons around geographic regions of 10 square kilometers or more in 

which all model grid cells met or exceeded the 1.0 ratio threshold.  As the automated algorithm was based on an 

initial prototype and not an operationally ready system, it is important to note that this study did not intend to test 

the effectiveness of the system.   

The automated polygons were visualized within the upper-right quadrant of the display within the unit 

streamflow visualization.  Participants were permitted to toggle between the unit streamflow map and the polygons 

to improve the visibility of the polygons, or could also overlay the two products; an example where the underlying 

unit streamflow visualization is hidden is shown in Figure 2.  As placing the polygons over the QPE-to-FFG Ratio 

guidance product would have merely resulted in highlighting the regions already represented as “at-risk” by the 

color scale, this placement was expected to allow participants to assess the overlap in risk between the two decision 

aids.   
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Figure 2. Demonstration of the information visualizations presented to study participants, with the automated 

polygons displayed in the upper-right quadrant with the underlying unit streamflow visualization hidden 
 

2.4 Data Collection Instruments 

The study utilized a Tobii TX300 eye tracking system attached beneath a 23-inch monitor.  Participants 

interacted with the display via a keyboard and mouse.  In addition to eye tracking, a set of probes assessed SA 

across the three theoretical levels in a method modelled on Dao et al. (2009).  SAGAT-style probes assessed SA 

with respect to the three levels in the Endsley (1995b) model of SA, and these were presented during breaks in 

short scenario-based simulations. 

In line with this framework, the probes assessed awareness of information in the past (the information 

contained within the first 1.5 hours’ worth of data visualizations), the present (the final frame of data 

visualizations), and the future (expectations of flooding in the following two hours).  Probes were presented in the 

form of a question about the past, present, or anticipated environmental status accompanied by a blank map of the 

scenario’s geographic region, and participants provided responses by clicking on the maps multiple times.  Some 

probes asked participants to recall specific values, whereas others assessed participants’ abilities to synthesize 

information, for example, by identifying areas on a map that were at risk of flooding.  Value recall-based probes 

were assigned a score based on response accuracy, while map-based probes were scored based on proximity of 

responses to the correct state.  For these probes, a score was assigned on the physical proximity of the participant’s 

response to the ground truth.  An illustration of one such probe is shown in Figure 3.  Participant performance 
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was considered per level of SA and also as a composite score based on the mean value of the scores within and 

across levels. 

 

Figure 3.  The study used a freeze-probe approach to assess SA, where participants responded to queries by 

clicking on regions of a blank map.  Here, comprehension of the present environmental state was assessed, with 

participants responding to the statement: “Using the provided map, click which polygons highlight areas with 

conditions associated with flash flooding at the current time.” 
 

2.5 Procedure 

Upon arrival, participants received an explanation of the study goals and signed an informed consent 

form.  Following this, participants received training over the forecasting guidance products, which also gave 

participants an opportunity to ask questions about the study and the forecasting tools.  When ready, participants 

were prompted that they had just begun a forecasting shift and a significant rainfall event was underway.  In the 

prompt, a fictional colleague needed them to review the prior two hours of model data and radar scans in order to 

identify areas of high flash flooding risk.  Participants completed three unique forecasting scenarios presented in 

a randomized order.  Before each scenario began, participants read an environmental status briefing containing 

information about existing heavy rainfall watches, flash flood watches/warnings, and mesoscale discussions 

produced by the NWS Storm Prediction Center and WFOs. 

Following the briefing, participants took part in one of three scenarios.  Scenarios and automation 

conditions were presented semi-randomly.  During each trial, the four-panel display showed each of the guidance 

products.  In the automation-unavailable condition, the guidance products appeared with no alterations.  However, 

in the automation-available condition, the polygons were overlaid on the upper-right quadrant of the display.  
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Although participants could view the automated polygons in the automation-available condition, they were not 

constantly visible.  Due to technical constraints, the polygons only appeared during the timestamp that they 

referenced.  Thus, even when available, participants were not always able to see the automation.  The experimental 

conditions were distinguished from each other in that in one, participants could choose to use the automation, 

whereas in the other, they were not given the option.  Participants were allowed up to seven minutes to assess the 

state of the environment. 

 During each scenario, the eye tracker captured fixations and their duration.  At breakpoints, participants 

responded to the SA assessment probes.  In line with the modified SAGAT framework, participants indicated their 

responses to the map-based and value-recall probes in order to assess SA held in memory.  Following this, 

participants either viewed the second half of the same scenario with the reverse automation condition.  This 

process repeated for each of the three scenarios.  Following the data collection, participants completed a 

background experience questionnaire and were debriefed.  The experiment took 1 to 1.5 hours per participant to 

complete. 

2.6 Hypotheses 

We hypothesized that automation presence would increase the number of eye fixations as well as eye 

fixation duration within the display panel containing the automation.  We hypothesized that the greatest number 

of eye fixations and fixation durations would occur in the quadrant of the four-panel information display 

containing the automated polygons.  We also assessed scanning patterns across the display, hypothesizing that the 

proportion of glances between AOIs would vary based on automation condition. 

In relation to SA, we expected to identify a difference between automation conditions.  Aligning with 

findings by Endsley and Kiris (1995), it was hypothesized automation presence would significantly affect Level 

2. As one premise was that the attention-directing automation would guide forecaster attention to geographic areas 

of high risk, we also hypothesized that this would lead to higher scores on the Level 3 probes in the scenarios 

where automation was available. Finally, when considering eye tracking measures in conjunction with SA 

measures, we expected to identify a correlation between the two. The research hypotheses are presented in Table 

2. 

Table 2. Research hypotheses 

Hypothesis Description 

H1 Situation awareness will be affected by automation condition 

H2 Total fixation duration will be affected by automation condition and will vary between AOIs 

H3 Fixation count will be affected by automation condition and will vary between AOIs 

H4 Scanpath behavior will vary based on automation condition 



 

12 

 

H5 There will be a relationship between mean situation awareness score and at least one eye 

tracking measure 

 

2.7 Data Analysis 

Eye tracking dependent variables (fixation duration and fixation count) were collected and analyzed with 

the Tobii Studio software with four AOIs corresponding to the forecasting information visualizations in Figure 1.  

The data were filtered based a 70% gaze sample threshold, indicating the number of usable data points per 

recording.  In total, this led to a sample of 68 recordings being included in the analyses. Situation awareness was 

measured with an accuracy-based score for the probes reflecting Levels 1, 2, and 3 SA, as well as a composite 

score calculated from the mean of the level scores. 

The assumptions of normality and equal variance were checked for each variable. A series of t-tests, 

ANOVAs, and post hoc tests were used to explore the relationships between the dependent variables, automation 

condition, and decision aid use. Finally, a robust regression was used to explore the relationship among the eye 

tracking variables and SA score. 

 

3. RESULTS 

3.1 Situation Awareness Scores 

Between scenarios, participants responded to probes designed to assess SA using a freeze-probe 

technique. In combination, findings did not support Hypothesis H1. The composite mean SA scores satisfied the 

assumptions of constant variance and normality, D(104) = 0.068, p > 0.15. Similarly, the normality assumption 

was upheld for mean scores of SA for Level 2 probes, D(104) = 0.07, p > 0.15, but not for Level 1 probes, D(104) 

= 0.15, p < 0.01, or Level 3 probes, D(104) = 0.11, p < 0.01.  A paired, two-tailed t-test failed to identify a 

significant difference in composite SA score between the automation available (μ = 0.34, σ = 0.14) and unavailable 

conditions (μ = 0.33, σ = 0.13), t(101) = -0.21, p = 0.83.  Individually, a Kruskal-Wallis test did not find any 

significant differences in performance between automation conditions in the Level 1 scores, χ2(1) = 0.04, p > 0.15, 

or Level 3 scores, χ2(1) = 0.00, p > 0.15; similarly, a t-test failed to identify any significant effect of automation 

condition on SA score for Level 2 probes, t(100) = -0.81, p > 0.15.  

3.2 Eye Tracking Measures 

 3.2.1 Total Fixation Duration. Total fixation duration data satisfied the homogeneity of variance 

assumption but a Kolmogorov-Smirnov Test indicated that the data were not normally distributed, D(269) = 0.10, 

p < 0.01. An ANOVA found that the availability of automation did not produce significant effect, F(1, 261) = 
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2.41, p = 0.12. However, it did identify a significant difference between AOIs in terms of total fixation duration, 

F(3, 261) = 7.92, p < 0.001, as well as a significant interaction effect between automation condition and AOI, F(3, 

261) = 6.44, p > 0.001, a finding in alignment with Hypothesis H2.  A post hoc Tukey test indicated that among 

the four AOIs, participants spent the same amount of time observing the MRMS panel (µ = 65.21, σ = 26.89) and 

the USF panel (µ = 52.78, σ = 39.84), but spent significantly more time observing the MRMS than the FFG (µ = 

43.64, σ = 28.11) or the ARI panels (µ = 42.51, σ = 29.79), but total fixation duration among the USF, FFG, and 

ARI were not significantly different (p > 0.05). A summary of the total fixation duration data by AOI and 

automation condition is shown in Figure 4. 

 

Figure 4. Total fixation duration per AOI and automation condition with central tendency and spread of data 

 3.2.2 Mean Number of Fixations by AOI. The mean fixation count data satisfied the equal variance 

assumption but was not normally distributed, D(269) = 0.10, p < 0.01. An ANOVA identified a significant 

interaction between the AOI and automation condition, F(3, 261) = 6.16, p < 0.001.  Significant main effects were 

also identified with both automation condition, F(1, 261) = 7.21, p < 0.01, and AOI, F(3, 261) = 4.28, p < 0.01.  

A Tukey pairwise comparisons test for post hoc comparison revealed that automation availability was associated 

with a greater number fixations (µ = 148.17, σ = 84.51) compared to the unavailable condition (µ = 122.62, σ = 

77.27).  Post hoc comparisons also revealed that fixation count in the MRMS AOI (µ = 158.51, σ = 63.37) 

significantly differed from the FFG panel (µ = 119.91, σ = 65.69, p < 0.05) and the ARI panel (µ = 118.70, σ = 
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78.21, p < 0.05), but not the USF panel (µ = 158.51, σ = 63.37, p > 0.05).  The remaining three AOIs did not 

significantly differ from each other.  This may have been due to the salience of radar imagery in the MRMS AOI, 

or alternatively because radar imagery updated every two minutes during the simulations, which was more 

frequent than the other AOI types. Findings upheld Hypothesis H3, and a summary of the fixation count data by 

AOI and automation condition is shown in Figure 5. 

 

Figure 5. Number of eye fixations per AOI and automation condition with central tendency and spread of data 

3.2.3 Scanpath Analysis.  In addition to recording fixation data, the eye tracker also captured information 

about gaze patterns.  Analysis of scanpaths, or the time sequenced order of fixations among AOIs, reflects 

scanning patterns among display elements and has been used to categorize behaviors associated with performance 

differences (McClung & Kang, 2016).  We estimated the number of movements between the core AOIs by 

calculating the frequency of bidirectional exchanges.  Exchanges between AOIs and any part of the display not 

captured in an AOI (e.g. the menu bar at the top of the display) were excluded intentionally.   

Figure 6 presents a comparison between gaze movement exchanges between the automation-available 

and automation-unavailable conditions, shown as a percentage of all core AOI exchanges. When automation was 

absent, participants frequently compared the MRMS AOI with the USF and FFG AOIs.  When automation was 

present, participants slightly changed their scanning behavior; participants had slightly fewer comparisons 

between the MRMS and FFG AOIs, but slightly more ARI-USF and MRMS-ARI exchanges, however, contrary 
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to Hypothesis H4, a t-test failed to detect a significant difference between the automation-available (µ = 0.17, σ 

= 0.036) and –unavailable conditions (µ = 0.17, σ = 0.049), t(9) = 0.00, p = 1.00. 

 

 

Figure 6.  Inter-AOI glance movements representing scanpaths between the core AOIs with and without access 

to automation 
 

3.3 Assessing the Relationship Between SA Score and Eye Tracking Measures 

A multiple regression model was fit to the data to explore the relationship between eye movements and 

the composite SA score. In addition to the dependent variables previously discussed, the regression model 

incorporated an additional variable of time to first fixation within each AOI.  Task duration, forecasting scenario, 

automation condition, and two-way interaction terms among them were also considered. 

The forward selection technique identified a reduced model with an Adjusted R2 of 0.28.  Composite SA 

score was predicted by the total fixation duration within the ARI AOI predictor, (β = 0.0019, p < 0.05), number 

of fixations within the MRMS AOI, (β = -0.00064, p = 0.20), and the scenario, (βNJ = 0.14, p < 0.01; βWV = -

0.0018, p > 0.15) (R2 = 0.35; Adj. R2 = 0.28). An ANOVA identified a significant effect of scenario, F(2, 38) = 

6.58, p < 0.01, and ARI total fixation duration, F(1, 38) = 4.14, p = 0.049. These findings lend support to 

Hypothesis H5, indicating that total fixation duration and fixation count are appropriate indicators of situation 

awareness within forecasting tasks. 

 

4. DISCUSSION 
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This study explored the relationship between situation awareness, attention-directing automation, and 

eye movement behavior.  Findings moderately supported the hypothesis (H5) that eye tracking measures would 

predict performance on an accuracy-based SA assessment, a finding consistent with previous research (Moore 

and Gugerty 2010; van de Merwe et al. 2012). The regression analyses indicated that participant SA was predicted 

by total fixation duration, particularly within the ARI visualization. SA was also affected by the scenario variable, 

suggesting that participants’ experience levels with forecasting over certain geographic regions played a 

significant role, or that the forecasting tasks significantly differed in demand, or perhaps a combination of both. 

These findings support the concept that visual attention is linked to awareness, and they show that overall SA 

increased as participants spent more time considering specific information sources.  This may suggest that 

participants who spent more time fixating on the visualizations were able to develop a more comprehensive 

situational picture.     

Against expectations, findings from the analysis of SA scores suggest that automation condition did not 

significantly affect participant SA (H1). This may be explained by the nature of the instructions provided during 

the pre-study training. Participants were instructed to treat the automation as support but not a definitive 

prediction.  Thus, participants may have been able to remain in the loop while assessing the situation. The 

automation appeared to attract participants’ attention; in comparison with data on the total fixation duration, the 

total time spent fixating within the USF AOI was the lowest in the automation unavailable condition, but the value 

increased with availability. This scanpath analysis revealed individual differences in forecast guidance usage 

during the situation assessment process.  When polygons were absent, participants frequently compared the 

MRMS AOI with the USF and FFG AOIs.  When polygons were present, participants slightly changed their 

scanning behavior; participants had fewer comparisons between the MRMS and FFG AOIs, but slightly more 

ARI-USF and MRMS-ARI exchanges, however, contrary to Hypothesis H4, these patterns were not significantly 

different between automation conditions. It is possible that some of these minor differences were due to variations 

in individual expertise, familiarity with flash flood forecasting guidance products, or level of understanding with 

regard to the automated polygons, but further investigation would be needed to clarify this. 

Closer inspection of the eye movement data confirmed several but not all of the hypotheses related to the 

automation condition.  The hypothesis that participants would fixate more frequently within the USF AOI when 

the automation was present was confirmed (H3), indicating that participants did attend to the automated forecast 

polygons when they were visible.  Likewise, findings also partially confirmed the hypothesis that fixation duration 

in the USF AOI would increase with automation availability (H2).  This phenomenon was observed in the 
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proportional fixation duration data, but not the absolute duration data.  In comparison, participants spent the most 

time fixating within the most familiar product, the radar scans.  In addition to being commonly used in operations, 

radar imagery received updates more frequently than the hydrologic models did, meaning that the visual stimuli 

changed more frequently.  This may have attracted the eyes and motivated participants to reassess the panel more 

often than the other AOIs.  Participants had varying levels of experience with the other three guidance products 

with the least familiar being the USF visualization. 

In relation to the literature, these findings are intriguing. While Endsley and Kiris (1995) observed a 

negative correlation between automation level and SA, Kaber and Endsley (2004) found that moderate levels of 

automation were associated with higher levels of SA.  We suggest that, similar to Kaber and Endsley’s (2004) 

work, the current automation acted at a moderate level of automation.  Eye tracking showed that participants did 

fixate upon the automation, but as the study did not require participants to base decisions on the automation alone, 

we hypothesize that SA may improve as operators gain experience with automation. Furthermore, while Dao et 

al. (2009) did not detect any significant difference in SA accuracy between automation levels in an air traffic 

control task, they did find that SA, as measured by response time, did correlate to automation level.  In the current 

work, a preliminary investigation did not reflect a significant correlation between response times and the current 

results, but further research would be needed to explore this further. 

While the regression analyses demonstrated eye tracking’s viability as a method for assessing SA, it also 

provided insight at a qualitative level into how forecasters developed and maintained SA.  The analyses showed 

that in addition to consulting individual products, forecasters routinely compared between all four products.  The 

comparative nature of situation assessment has been identified as an integral part of weather forecasting 

(Kirschenbaum 2004; Pliske et al. 2004; Trafton and Hoffman 2007).  Eye tracking supports this line of research 

through scanpath analysis, which has been used to describe information scanning during forecast decision making 

(Wilson et al., 2016) and have been categorized for human performance analysis (Kang & Landry, 2014; Kang & 

Landry, 2015; McClung & Kang, 2016). In the current investigation, relatively long fixation durations and high 

fixation counts suggest that participants not only used the familiar radar imagery to establish a situational 

understanding but they also used it in comparison tasks as a benchmark.  Feedback received during the debriefing 

phase indicated that some participants used the familiar radar product to calibrate their mental models with the 

less-familiar guidance products. Furthermore, in addition monitoring and comparison activities, SA in forecasting 

is affected by a collection of cognitive and system factors.  For example, from a system design perspective, 

visualization algorithms have been shown to affect SA in forecasting; in a study where participants judged ARI 
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visualizations depicting flash flood conditions, Argyle et al. (2017) observed a difference in threat detection 

abilities between two alternative visualization algorithms.  Forecaster characteristics also play a role in SA; 

Gugerty (2011) suggested that attention allocation capacity could impact an operator’s ability to develop SA.  

While not the main objective of this study, attention allocation can also be assessed with eye tracking, and it 

incorporating this into models of human decision making could offer benefits to performance monitoring while 

enhancing understanding of cognitive phenomena. 

In addition to providing insight into the use of eye tracking to describe forecaster information usage, this 

study has several practical implications, first, in relation to eye tracking as a less-invasive mechanism for assessing 

SA, and second, in relation to the use of eye tracking assessment as a means for supporting the development of 

future forecasting visualization systems. Findings from the regression analysis supported the hypothesis that SA 

would be predicted via ocular measures (H5).  The findings aligned with those of Moore and Gugerty (2010), who 

observed that the proportion of fixation time within an AOI was the most significant predictor of SA in an air 

traffic control task. In the current work, the analysis indicated that total fixation duration, fixation count, and task 

scenario acted as significant predictors of SA level in this context.  Performance-based SA measures, such as 

SAGAT, are relatively easy to implement and can provide insight into each of the three levels of SA (Endsley 

1995a), but they have been criticized for being disruptive to participant workflow (Salmon et al. 2008). While 

previous studies have used eye fixation data to group participants into high- versus low-SA levels (Bhavsar et al. 

2017; Kiran et al. 2018), this study demonstrates that fixation data may be able to predict SAGAT-based measures 

of SA, thereby opening the door to more objective and less intrusive assessments of human cognition. 

A second practical implication of this work relates to the development of future forecasting decision aids. 

The regression analysis indicated that total fixation duration (ARI AOI) and fixation count (MRMS AOI) 

predicted overall SA as estimated by the mean score from the probes. While a link to radar imagery was not 

surprising, the significance of fixation duration within the ARI visualization was more so, and this introduced a 

new question regarding the utility of other in-development flash flood prediction models. Although radar scans 

and FFG-based guidance products are available in operational settings, the Average Recurrence Interval (ARI) 

and CREST Unit Streamflow (USF) products were in-development at the time of this work and not available for 

use in formal work display systems. The inclusion of the ARI fixation duration term in the regression model 

suggests that it played a role in developing awareness of the unfolding flash flooding situation. In future work, a 

similar eye tracking-based methodology could be applied in further investigations of the influence of novel 
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decision aids on forecaster situation awareness, where findings could inform the user-centered design of 

information visualization systems. 

There were several limitations that would potentially limit generalizability of the outcomes. First, 

participants had varying levels of familiarity with the geographic regions used in the scenarios. For example, one 

participant had extensive experience forecasting in the Indiana-based scenario, and so he was very familiar with 

county names and river structures presented in the Indiana scenarios. Others, however, expressed discomfort with 

being able to assess risk accurately in regions with which they were less familiar. As past research into forecasting, 

experience, and SA has shown, experience and mental models are closely linked with SA, and such a lack of 

experience may be a contributing factor to diminished SA during this experiment. 

In terms of technical limitations, at the time of the study, forecasting automation was within conceptual 

stages of development, requiring the tool used within the study to be an abstraction of an envisioned future 

product. The algorithm used in the present study was based on a threshold from the QPE Ratio product, which 

was chosen due to FFG’s familiarity to most forecasters across the United States. While the automation 

highlighted the regions of interest that were visible in the QPE-to-FFG ratio map, it did provide a way to directly 

compare the two products in a way that overlaying the two maps on top of each other could not (overlaying tended 

to lead to maps that were hard to interpret when color tables conflicted).  Forecasters often engage in comparison 

activities and so this may be an effective way to facilitate comparison and mental model building (Kirschenbaum, 

2004; Trafton & Hoffman, 2007). 

Finally, few participants were familiar with the concept of forecasting automation, which likely impacted 

general understanding in terms of intended usage, despite training. Nevertheless, the eye tracking measures 

showed that participants did consult the AOI containing automation in those scenarios where it was available. As 

forecasting automation takes on a higher degree of complexity, their place within the situation assessment process 

may adapt. Due to technical constraints imposed by the current state of automation, the present work was not able 

to capture such user behavior, but we suggest that this work has implications on understanding the relationship 

between SA and graphical mechanisms for directing attention in a weather forecasting display. 

 

5. CONCLUSIONS 

This study supports the hypothesis that eye tracking can provide a minimally invasive means of 

estimating SA in dynamic, sociotechnical systems. Future work should investigate how weather forecasters 

develop and maintain SA, particularly during tasks involving decision support. In addition to identifying a link 
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between SA and eye tracking measures, the analysis revealed behavioral differences when participants had access 

to automation. While the automation did not appear to distract from the main forecasting task, participants had 

relatively low SA. In future work, employing a more naturalistic research approach with eye tracking may 

facilitate real-time data capture from forecasters in operational settings in a relatively non-intrusive manner, and 

could continue to progress the technology towards an in-situ application. Eye tracking has potential for use in 

operational forecasting environments, and it may be an effective tool for identifying forecasters’ training needs or 

for real-time assessment of human performance. 

 The greatest contribution of this work is the identification of the significant relationship among eye 

fixation data and probe-based measures of SA in weather forecasting. Previous studies have used eye tracking as 

an SA assessment method, but research has frequently focused on aviation, air traffic control, and driving. The 

study provided evidence into the impact of an attention-directing automation mechanism on forecaster SA, and 

from a methodological perspective, also showed that several eye tracking metrics can be used, to varying degrees, 

as predictors of SA. 
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