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Cable to patient noncompliance with screening
guidelines. While many noninvasive tests have been devel-
oped to address compliance issues, none compare to the
diagnostic accuracy of colonoscopy.2 Currently, the most
accurate noninvasive diagnostic on the market (Cologuard
DNA-FIT; Exact Sciences, Madison, WI) cites a CRC sensi-
tivity of 92%.3 However, the high-risk adenoma (HRA)
detection rate is only 42%.3 Accurate detection of HRAs
would permit preemptive excision of dysplastic tissue
before carcinogenesis, thus reducing CRC incidence and
associated mortality.4 Here we describe a method to reliably
extract and evaluate stool-derived eukaryotic RNA (seRNA)
transcripts for development of an algorithm that can non-
invasively, sensitively, and specifically detect HRAs in a
screening population. Full development of an assay that
leverages seRNA biomarkers could facilitate noninvasive
detection of HRAs and prevention of CRC.

Methods
Stool samples were prospectively collected from patients

before preparing for and undergoing CRC screening via colo-
noscopy. In total, 26 patients had HRAs, 37 patients had
medium-risk adenomas, 61 patients had low-risk adenomas, 50
patients had benign polyps, and 90 patients had no findings on
colonoscopy (Supplementary Table 1). Isolated seRNA was
subjected to targeted amplification using a custom panel of 639
amplicons (TruSeq Targeted RNA Custom Panel; Illumina, San
Diego, CA) and next-generation sequencing (NextSeq 550;
Illumina). Normalized expression of 639 amplicons was eval-
uated for all samples in the training set (n ¼ 154 samples).
Ten-fold internal cross-validation of the training set with in-
dependent feature selection within each fold was used to assess
training model performance (n ¼ 154 samples with 9:1 splits).
A cutoff point for positive findings was determined by
combining predictions from the subtesting sets into one
receiver operating characteristic (ROC) curve and selecting a
value to achieve an 85% specificity. Subsequently, final model
features were selected using 100-fold bootstrapping of the
entire training set (n ¼ 154 samples) and an ordinal regression
model was built (Figure 1A). This model was employed on a
prospective hold-out test set (n ¼ 110 unique samples). Hold-
out test set performance was measured by applying the pre-
viously defined cutoff point (Supplementary Methods,
Supplementary Table 2.

Results
Technical replicates exhibited minimal difference in

amplicon expression (Pearson r2 average ¼ 0.99); replicates
subjected to varied enrichment strategies (200 ng with 30
polymerase chain reaction cycles vs 400 ng with 28 poly-
merase chain reaction [PCR] cycles) demonstrated an
average Pearson r2 correlation of 0.76; replicates subjected
to independent sequencing runs demonstrated average
Pearson r2 correlation for expression of 0.73 (see
Supplementary Methods). Using 100-fold bootstrapping of
the training set (n ¼ 154 unique samples, 15 amplicons
were identified as differentially expressed (informative in
>25% of all bootstrapped splits) (Figure 1A). The 15
differentially expressed amplicons and raw GAPDH values
were used to develop an ordinal regression model. Initial
model performance was assessed through 10-fold internal
cross-validation of the training set. When comparing HRAs
to all other findings (ie, medium-risk adenomas, low-risk
adenomas, benign polyps, and no findings on a colonos-
copy), model performance for all 10 folds of internal cross-
validation attained an ROC area under the curve (AUC) of
0.70 (Figure 1B). A threshold value of 0.1415 was selected
to be the cutoff point for a positive finding.

Model performance was subsequently tested by applying
it to the prospective hold out test set (n ¼ 110 samples, each
from a unique donor). Model output correlated with disease
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severity (1-way analysis of variance; P ¼ .017), which was
not provided as a feature for model training (Figure 1C).
Upon ROC analysis, the ordinal regression model attained an
AUC of 0.77 when comparing HRAs to all other findings.
When employing the previously defined cutoff point of
0.1415 to the ROC curve, the model demonstrated a 45%
sensitivity for HRAs (n ¼ 11 samples; 95% confidence in-
terval [CI] 18.4%–73.4%), 93% blended specificity for me-
dium- and low-risk adenomas (n ¼ 40; 95% CI 83.4%–
98.6%), 88% specificity for benign polyps (n ¼ 24; 95% CI
72.6%–97.5%), and an 80% specificity for no findings on a
colonoscopy (n ¼ 35; 95% CI 65.5%–91.3%) (Figure 1D).

Discussion
The seRNA assay described herein attained a 45%

sensitivity and 87% specificity for HRA detection. Model
performance was increased in the hold-out test set (AUC
0.77) relative to internal cross-validation (AUC 0.70), how-
ever, this difference was within the margin of error defined
by the CIs. Regarding our assay, seRNA offers several po-
tential advantages compared to other stool- or blood-based
biomarkers.5 First, seRNA biomarkers are derived from
epithelial cells shed within the gastrointestinal tract.
Therefore, the seRNA signal represents a homogenized
sampling of perilesional tissue, which can be shed into the
lumen and excreted in stool.6 Second, seRNA may provide a
concentrated and amplified signal that can be observed via
multiple transcripts in a single pathway.7 Finally, the RNA
transcriptome can provide an assessment of the down-
stream molecular consequence of multiple precancerous
variants that converge upon common tumorigenesis path-
ways. These characteristics enabled a relatively small panel
of seRNA biomarkers to sensitively and specifically detect
HRAs. HRAs are important to detect and remove due to an
annual transition rate of HRA to CRC of 2.6%–5.6%,8 which
implies that the cumulative risk for cancer transformation
=
Figure 1. Eligible feature selection using bootstrapping of the tr
detection of HRAs based on 10-fold internal cross-validation a
samples). (A) Transcripts used in the custom amplicon panel (n
ducted research and differentially expressed amplicons were
training set. If an amplicon was observed in at least 25% of
differentially expressed and was eligible as a feature for the final
the HUGO gene name with exon location of forward and reve
selected as differentially expressed. (B) Ten-fold internal cros
samples), 15 differentially expressed amplicons, and raw GAPD
HRAs were considered positive and other findings (medium-risk
a colonoscopy) were considered negative. (C) Box plots show m
prospective hold-out test set (n ¼ 110 samples). Sample type is
severe, HRA 2.1 ¼ most severe) (Supplementary Table 1). Each
box encases the first and third quartile of the data set, the bar w
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dashed line represents the threshold defined by internal cross-va
was created using the training set (n ¼ 154 samples) and all 16
on the prospective hold-out test set (n ¼ 110 samples) to determ
other findings (medium-risk adenomas, low-risk adenomas, be
negative. Sensitivity is shown for HRAs and specificity is shown
and hold-out test set (n ¼ 110) was from a unique donor (Supple
adenoma; Sen., sensitivity; Spec., specificity.
before the next screening recommendation is approximately
12%, given a 3-year screening interval, and approximately
40%, given a 10-year screening interval.

Limitations of this study include use of a single orga-
nization (3 geographically distinct endoscopy sites) for
sample collection, use of a hold-out test set obtained from
the same collection sites, and the limited number of HRAs in
our hold-out test set. Additionally, the low incidence of CRC
in a screening population made it challenging to prospec-
tively obtain stool samples from CRC patients. Future
research should include evaluation of these markers in a
larger independent test set drawn from multiple sites.
Nonetheless, these data provide evidence that seRNA bio-
markers could significantly improve the ability to detect
HRAs noninvasively, with potential to improve screening
accuracy and compliance for the millions of Americans who
are currently noncompliant with existing screening
guidelines.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2019.05.058.
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Supplementary Methods

Study Design
Stool samples were prospectively and consecutively

collected from patients undergoing CRC screening prior to
treatment or surgical resection. Patients with a family
history of CRC were considered eligible for the study;
however, patients who had a personal history of CRC (eg,
previously diagnosed with CRC via colonoscopy) or any
other inflammatory gastrointestinal disease (eg, inflam-
matory bowel disease) were considered ineligible. The
Washington University School of Medicine (St Louis, MO)
Institutional Review Board approved the protocol and
research procedures (IRB #20111107). The primary
outcome was the feasibility of using seRNA to assess risk
for HRAs. These human RNA biomarkers are derived from
the enterocytes that are sloughed from the lumen of the
colon and excreted into the stool as whole cells. Isolated
seRNA was subjected to targeted amplification (TruSeq
Targeted RNA Custom Panel; Illumina) and next-
generation sequencing (NextSeq 550; Illumina).
Sequencing reads were used for transcript selection,
model development, and model validation.

Eligible Patients and Sample Collection
Stool samples were obtained by the Digestive Diseases

Research Core Center at Washington University School of
Medicine. All patients were sent a stool sample collection kit
by mail and returned the kit via courier to the Digestive
Diseases Research Core Center. Clinical data (eg, de-
mographic information, and colonoscopy results) were
collected by the Digestive Diseases Research Core Center.
Stool samples were evaluated for occult blood using a OC-
Light S FIT (Polymedco, Cortlandt Manor, NY) before
seRNA extraction. Each patient recruited for the study had a
colonoscopy performed and those with positive findings
underwent biopsy and subsequent histopathologic review
to determine neoplastic classification. Adenoma classifica-
tion was stratified based on histopathology (benign vs
premalignant), number of polyps, size of polyps, and dif-
ferentiation. If the patient had no findings during the colo-
noscopy, he or she was labeled as healthy. If a patient had
multiple findings on their colonoscopy, the ultimate label
represented the lesion with the highest severity of disease.
No samples were excluded from the analysis based on co-
lonoscopy result. The relative proportions of colonoscopy
results were not significantly different from those observed
in other prospective clinical trials.1

Development of a Training Set and a Testing Set
In total, 264 stool samples, each from a unique individual,

were prospectively collected. One hundred and fifty-four
stool samples were used as a training set and 110 stool
samples were used as a hold-out test set. The training set and
hold-out test setwere evaluated for categorical, demographic,
and handling differences using a t test (population means) or

Fisher’s exact test (population frequencies) and significance
was indicated if the P value was <.05.

Stool Sample Enrichment for Human RNA From
Exfoliated Enterocytes Using Differential
Centrifugation

Stool samples were aliquoted into 50-mL conical tubes
and filled to 45 mL using suspension buffer (10 mM Tris, 1
mM EDTA, 0.005% Tween-20, 80U RNase Inhibitor, pH 7.5).
Samples were homogenized and subjected to differential
centrifugation using a swing-bucket centrifuge for 10 mi-
nutes at 4�C to separate the homogenate into a human cell
layer below an enriched bacterial supernatant. The super-
natant was discarded to eliminate bacterial noise and the
pellet was suspended into a guanidine thiocyanate buffer to
lyse the enterocytes and expose the human biomarkers.2

From the lysate layer containing enriched human nucleic
acids, 2 mL of the solution was purified using a NucliSENS
easyMag automated system (bioMérieux, Durham, NC).3,4

The final solution was subjected to Baseline-ZERO DNase
treatment (Epicentre Technologies, Madison, WI) and clean-
up using the NucliSENS easyMag.5 The RNA in the final
solution was likely derived from the colorectum, however,
the solution potentially had upper gastrointestinal and
bacterial contamination.

Custom Amplicon Panel Development
The custom amplicon panel was developed using pre-

viously conducted research and literature review.6 First,
transcripts were selected based on a microarray experiment
(Gene Expression Omnibus Accession #GSE99573).6 For
this experiment, total seRNA was extracted from stool
samples and expression was assessed using the Affymetrix
Human Transcriptome Array 2.0 (ThermoFisher Scientific,
Waltham, MA). Microarray expression profiles derived from
patients with CRC or premalignant adenomas (diseased
cohort) were compared to expression profiles from patients
with no findings on colonoscopy (healthy cohort). Tran-
scripts with significant differential expression (P < .03)
were selected for the amplicon panel. Additional transcripts
were selected based on a NanoString experiment.6 Again
stool samples were obtained from a diseased cohort and a
healthy cohort. Total seRNA was extracted from stool sam-
ples and expression was assessed using the nCounter Pan-
Cancer Pathways Panel (NanoString, Seattle, WA) and the
nCounter PanCancer Progression Panel (NanoString).
Differentially expressed transcripts were identified by
comparing the diseased cohort to the healthy cohort using
the nSolver differential expression analysis platform.
Finally, the literature was evaluated for additional tran-
scripts implicated in CRC. This included searching the
ClinVar,7 COSMIC,8 and CIViC9 databases, as well as other
pertinent studies.10,11 A custom amplicon panel was devel-
oped for targeted enrichment using the Illumina Design-
Studio. Use of exons provided in Figure 1 can be used to
guide amplicon development.
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Stool-Derived Eukaryotic RNA Quality Check and
Sequencing

The seRNA integrity and size was determined using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA) and mass was determined using a Qubit Fluorometer
(ThermoFisher Scientific). Samples required >200 ng of
RNA to be eligible for library preparation. Libraries were
prepared using a TruSeq Targeted RNA Custom Panel
(Illumina). No complementary DNA fragmentation was
required for sequencing. Sequencing was performed using
the NextSeq 550 System (Illumina) with 2 � 150 bp reads. A
PhiX spike-in was used for quality control. All samples in the
training set were sequenced across 4 independent
sequencing runs and all samples in the testing set were
sequenced across 4 independent sequencing runs.

Quantification Stool-Derived Eukaryotic RNA
Expression

Raw sequencing reads were aligned to the reference
genome (GRCh38) via HISAT2 with default parameters, and
counts were summarized within amplicon regions of inter-
est.12 Samples required >100,000 aligned reads for study
eligibility. For each sample, raw amplicon expression was
normalized to GAPDH, the internal housekeeping gene, such
that reported expression equates to amplicon read count
per million mapped GAPDH reads. Raw GAPDH values were
used as a measure for total eukaryotic RNA in each sample.
Raw GAPDH values were also eligible as a feature for model
development. Normalized amplicon values and raw GAPDH
values along with sample demographic information is
available in Supplementary Table 2.

Replicate Analysis to Assess Transcript
Expression Variability

Five patientswere used to assess reproducibility of seRNA
extraction and sequencing. Across these patients, 3 separate
reproducibility experiments were performed: technical
sequencing replicates, biological library preparation repli-
cates, and biological sequencing replicates. Pearson r corre-
lation was used to assess change in transcript expression for
all replicates across all amplicons in the custom panel.

The technical sequencing replicate experiment assessed
reproducibility of independent sequencing runs for tran-
script expression quantification. For this experiment, a sin-
gle sample was subjected to extraction and library
preparation. Subsequently, 2 separate aliquots of the library
preparation were sequenced on different sequencing runs.

The biological library preparation replicate experiment
assessed reproducibility of 2 different library preparations
for transcript expression quantification. For this experiment,
a stool sample from the same bowel movement was split
into 2 aliquots that were homogenized and extracted sepa-
rately. One sample used 400 ng of library input and was
subjected to 28 cycles of polymerase chain reaction ampli-
fication. The second sample used 200 ng of library input and
was subjected to 30 cycles of polymerase chain reaction
amplification. Both replicates underwent parallelized
sequencing on the same sequencing run.

The biological sequencing replicate experiment assessed
reproducibility of independent sequencing runs for tran-
script expression quantification. For this experiment, a stool
sample from the same bowel movement was split into 2
aliquots that were homogenized and extracted separately.
Both samples used 400 ng of library input and were sub-
jected to 30 cycles of polymerase chain reaction amplifica-
tion. The samples were subsequently sequenced on
independent sequencing runs.

Parameters for Ordinal Regression Model
Development

Linear ordinal regression models were trained using
logistic loss in combination with the All-Threshold loss
function13,14 to respect the ordinality of predicted labels (or
the progression of disease). Progression of disease included
negative findings (no findings on a colonoscopy, benign
polyps, low-risk adenomas), medium-risk adenomas, and
HRAs. Distance between the ordinal predicted labels were
equally distant. The optimization methods employed were
L-BFGS-B, an extension of the limited-memory BFGS opti-
mization algorithm. A Python implementation of the algo-
rithm mord (version 0.3) was employed in our analysis.14

Other software used included Python (version 3.6.5), scipy
(version 1.0.0), and sklearn (version 0.20.0).

Assessment of Internal Cross-Validation
Performance

Ten-fold internal cross-validation was performed using
bootstrapping of the training set (n ¼ 154 samples). Spe-
cifically, the training set was segregated into 10 different 9:1
splits (ie, subtraining and subtesting sets), whereby feature
selection was performed for each split. A feature was
eligible for model development if the absolute log2 fold-
change was >1 in both contrast groups (HRA vs low-risk
adenomas, benign polyps, no findings on a colonoscopy;
medium-risk adenomas vs low-risk adenomas, benign
polyps, no findings on a colonoscopy) and the analysis of
variance between the contrast groups had a P value <.05.
Within each split, the subtraining set and selected features
were used to build an ordinal regression model. Model
performance was assessed by employing this model on the
subtesting set. Output from the model provided a prediction
between 0 and 1 for each category (normal, medium-risk
adenoma, and HRA), whereby a larger number reflected
increased confidence in a positive finding. Predictions on
samples from each fold of the internal cross-validation for
all splits were compared to results from colonoscopy and
ROC curves were developed. A Bayesian approach was used
to compute the 95% CI for the ROC curve.15 Specifically, for
each sensitivity point estimate on the ROC curve, a posterior
distribution was calculated by employing the b function
(prior b used ¼ b [0,0]). The 95% CI was bound between 2.5
and 97.5 percentiles of the posterior distribution. Finally, an
optimal threshold was developed to attain at least 85%
specificity for all negative findings (MRAs, LRAs, benign
polyps, no findings on a colonoscopy). This cutoff point was
used to assess model performance for HRA sensitivity.
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Assessment of Hold-Out Test Set Performance
To further assess performance, a new model was built

using all samples in the training set and employed on the
hold-out test. Feature selection for model development
was performed using bootstrapping of the training set
(n ¼ 154 samples). Specifically, the training set was
segregated into 100 different 9:1 splits, whereby each
split was assessed for informative amplicons. An amplicon
was considered informative if the absolute log2 fold-
change was >1 in both contrast groups (HRA vs LRAs,
benign polyps, no findings on a colonoscopy; MRAs vs
LRAs, benign polyps, no findings on a colonoscopy) and
the analysis of variance between the contrast groups had
a P value < .05. If an amplicon was deemed informative in
at least 25% of all bootstrapped splits, it was considered
differentially expressed and eligible as a feature for model
development. This threshold was set by evaluating the
performance of models with inclusion of the most infor-
mative transcripts and maximizing ROC AUC. Raw GAPDH
values were also evaluated for significance between
contrast groups and were considered eligible for model
development. CI development was performed according to
the methods described here.

An ordinal regression model was built using all 154
samples in the training set and all eligible features.13 Spe-
cifically, this model penalizes the false prediction propor-
tionally according to the distance between prediction and
true label (ie, the further away a false prediction is from
truth, the more penalty). The goal of training is to minimize
the sum of such penalties. Output from the model provided
a prediction between 0 and 1 for each category (normal ¼ 0,
medium-risk adenoma ¼ 0.5, and HRA ¼ 1), whereby a

larger number reflected increased confidence in a positive
finding. Predictions on samples in the hold-out test set were
then compared to colonoscopy results and ROC curves were
developed. The predetermined threshold from internal
cross-validation performance was used to assess model
performance on the hold-out test set.
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