162 research outputs found

    Genome scanning of behavioral selection in a canine olfactory detection breeding cohort

    Get PDF
    Research on working dogs is growing rapidly due to increasing global demand. Here we report genome scanning of the risk of puppies being eliminated for behavioral reasons prior to entering the training phase of the US Transportation Security Administration\u27s (TSA) canine olfactory detection breeding and training program through 2013. Elimination of dogs for behavioral rather than medical reasons was based on evaluations at three, six, nine and twelve months after birth. Throughout that period, the fostered dogs underwent standardized behavioral tests at TSA facilities, and, for a subset of tests, dogs were tested in four different environments. Using methods developed for family studies, we performed a case-control genome wide association study (GWAS) of elimination due to behavioral observation and testing results in a cohort of 528 Labrador Retrievers (2002-2013). We accounted for relatedness by including the pedigree as a covariate and maximized power by including individuals with phenotype, but not genotype, data (approximately half of this cohort). We determined genome wide significance based on Bonferroni adjustment of two quasi-likelihood score tests optimized for either small or nearly-fully penetrant effect sizes. Six loci were significant and five suggestive, with approximately equal numbers of loci for the two tests and frequencies of loci with single versus multiple mapped markers. Several loci implicate a single gene, including CHD2, NRG3 and PDE1A which have strong relevance to behavior in humans and other species. We briefly discuss how expanded studies of canine breeding programs could advance understanding of learning and performance in the mammalian life course. Although human interactions and other environmental conditions will remain critical, our findings suggest genomic breeding selection could help improve working dog populations

    Time of day of vaccination affects SARS-CoV-2 antibody responses in an observational study of health care workers

    Get PDF
    The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented challenges for public health. Vaccinations against SARS-CoV-2 have slowed the incidence of new infections and reduced disease severity. As the time of day of vaccination has been reported to influence host immune responses to multiple pathogens, we quantified the influence of SARS-CoV-2 vaccination time, vaccine type, participant age, sex, and days post-vaccination on anti-Spike antibody responses in health care workers. The magnitude of the anti-Spike antibody response is associated with the time of day of vaccination, vaccine type, participant age, sex, and days post-vaccination. These results may be relevant for optimising SARS-CoV-2 vaccine efficacy

    A Phase 2a cohort expansion study to assess the safety, tolerability, and preliminary efficacy of CXD101 in patients with advanced solid-organ cancer expressing HR23B or lymphoma.

    Get PDF
    BACKGROUND: This Phase 2a dose expansion study was performed to assess the safety, tolerability and preliminary efficacy of the maximum tolerated dose of the oral histone de-acetylase (HDAC) inhibitor CXD101 in patients with relapsed / refractory lymphoma or advanced solid organ cancers and to assess HR23B protein expression by immunohistochemistry as a biomarker of HDAC inhibitor sensitivity. METHODS: Patients with advanced solid-organ cancers with high HR23B expression or lymphomas received CXD101 at the recommended phase 2 dose (RP2D). Key exclusions: corrected QT > 450 ms, neutrophils  1. Baseline HR23B expression was assessed by immunohistochemistry. RESULTS: Fifty-one patients enrolled between March 2014 and September 2019, 47 received CXD101 (19 solid-organ cancer, 28 lymphoma). Thirty-four patients received ≥80% RP2D. Baseline characteristics: median age 57.4 years, median prior lines 3, male sex 57%. The most common grade 3-4 adverse events were neutropenia (32%), thrombocytopenia (17%), anaemia (13%), and fatigue (9%) with no deaths on CXD101. No responses were seen in solid-organ cancers, with disease stabilisation in 36% or patients; the overall response rate in lymphoma was 17% with disease stabilisation in 52% of patients. Median progression-free survival was 1.2 months (95% confidence interval (CI) 1.2-5.4) in solid-organ cancers and 2.6 months (95%CI 1.2-5.6) in lymphomas. HR23B status did not predict response. CONCLUSIONS: CXD101 showed acceptable tolerability with efficacy seen in Hodgkin lymphoma, T-cell lymphoma and follicular lymphoma. Further studies assessing combination approaches are warranted. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01977638 . Registered 07 November 2013

    A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance

    Get PDF
    OBJECTIVES: To investigate the prospects of newly available benchtop sequencers to provide rapid whole-genome data in routine clinical practice. Next-generation sequencing has the potential to resolve uncertainties surrounding the route and timing of person-to-person transmission of healthcare-associated infection, which has been a major impediment to optimal management. DESIGN: The authors used Illumina MiSeq benchtop sequencing to undertake case studies investigating potential outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile. SETTING: Isolates were obtained from potential outbreaks associated with three UK hospitals. PARTICIPANTS: Isolates were sequenced from a cluster of eight MRSA carriers and an associated bacteraemia case in an intensive care unit, another MRSA cluster of six cases and two clusters of C difficile. Additionally, all C difficile isolates from cases over 6 weeks in a single hospital were rapidly sequenced and compared with local strain sequences obtained in the preceding 3 years. MAIN OUTCOME MEASURE: Whole-genome genetic relatedness of the isolates within each epidemiological cluster. RESULTS: Twenty-six MRSA and 15 C difficile isolates were successfully sequenced and analysed within 5 days of culture. Both MRSA clusters were identified as outbreaks, with most sequences in each cluster indistinguishable and all within three single nucleotide variants (SNVs). Epidemiologically unrelated isolates of the same spa-type were genetically distinct (≥21 SNVs). In both C difficile clusters, closely epidemiologically linked cases (in one case sharing the same strain type) were shown to be genetically distinct (≥144 SNVs). A reconstruction applying rapid sequencing in C difficile surveillance provided early outbreak detection and identified previously undetected probable community transmission. CONCLUSIONS: This benchtop sequencing technology is widely generalisable to human bacterial pathogens. The findings provide several good examples of how rapid and precise sequencing could transform identification of transmission of healthcare-associated infection and therefore improve hospital infection control and patient outcomes in routine clinical practice

    International Consensus Recommendations for the Treatment of Pediatric NMDAR Antibody Encephalitis

    Get PDF
    To create an international consensus treatment recommendation for pediatric NMDA receptor antibody encephalitis (NMDARE).After selection of a panel of 27 experts with representation from all continents, a 2-step Delphi method was adopted to develop consensus on relevant treatment regimens and statements, along with key definitions in pediatric NMDARE (disease severity, failure to improve, and relapse). Finally, an online face-to-face meeting was held to reach consensus (defined as ?75% agreement).Corticosteroids are recommended in all children with NMDARE (pulsed IV preferred), with additional IV immunoglobulin or plasma exchange in severe patients. Prolonged first-line immunotherapy can be offered for up to 3-12 months (oral corticosteroids or monthly IV corticosteroids/immunoglobulin), dependent on disease severity. Second-line treatments are recommended for cases refractory to first-line therapies (rituximab preferred over cyclophosphamide) and should be considered about 2 weeks after first-line initiation. Further immunotherapies for refractory disease 1-3 months after second-line initiation include another second-line treatment (such as cyclophosphamide) and escalation to tocilizumab. Maintenance immune suppression beyond 6 months (such as rituximab redosing or mycophenolate mofetil) is generally not required, except for patients with a more severe course or prolonged impairments and hospitalization. For patients with relapsing disease, second-line and prolonged maintenance therapy should be considered. The treatment of NMDARE following herpes simplex encephalitis should be similar to idiopathic NMDARE. Broad guidance is provided for the total treatment duration (first line, second line, and maintenance), which is dictated by the severity and clinical course (i.e., median 3, 9 and 18 months in the best, average, and worst responders, respectively). Recommendations on the timing of oncologic searches are provided.These international consensus recommendations for the management of pediatric NMDARE aim to standardize the treatment and provide practical guidance for clinicians, rather than absolute rules. A similar recommendation could be applicable to adult patients.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology

    Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella

    Get PDF
    Background: Foodborne outbreaks of Salmonella remain a pressing public health concern. We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting more than 30 patients in our hospital. This outbreak was linked to community, national and European-wide cases. Hospital patients with Salmonella are at high risk, and require a rapid response. We initially investigated this outbreak by whole-genome sequencing using a novel rapid protocol on the Illumina MiSeq; we then integrated these data with whole-genome data from surveillance sequencing, thereby placing the outbreak in a national context. Additionally, we investigated the potential of a newly released sequencing technology, the MinION from Oxford Nanopore Technologies, in the management of a hospital outbreak of Salmonella. Results: We demonstrate that rapid MiSeq sequencing can reduce the time to answer compared to the standard sequencing protocol with no impact on the results. We show, for the first time, that the MinION can acquire clinically relevant information in real time and within minutes of a DNA library being loaded. MinION sequencing permits confident assignment to species level within 20 min. Using a novel streaming phylogenetic placement method samples can be assigned to a serotype in 40 min and determined to be part of the outbreak in less than 2 h. Conclusions: Both approaches yielded reliable and actionable clinical information on the Salmonella outbreak in less than half a day. The rapid availability of such information may facilitate more informed epidemiological investigations and influence infection control practices
    corecore