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Genome scanning of behavioral 
selection in a canine olfactory 
detection breeding cohort
Alexander W. Eyre1, Isain Zapata2, Elizabeth Hare3, Katharine M. N. Lee4,11, Claire Bellis 5,6, 
Jennifer L. Essler7,12, Cynthia M. Otto8, James A. Serpell9 & Carlos E. Alvarez1,10*

Research on working dogs is growing rapidly due to increasing global demand. Here we report 
genome scanning of the risk of puppies being eliminated for behavioral reasons prior to entering the 
training phase of the US Transportation Security Administration’s (TSA) canine olfactory detection 
breeding and training program through 2013. Elimination of dogs for behavioral rather than medical 
reasons was based on evaluations at three, six, nine and twelve months after birth. Throughout 
that period, the fostered dogs underwent standardized behavioral tests at TSA facilities, and, for 
a subset of tests, dogs were tested in four different environments. Using methods developed for 
family studies, we performed a case-control genome wide association study (GWAS) of elimination 
due to behavioral observation and testing results in a cohort of 528 Labrador Retrievers (2002–2013). 
We accounted for relatedness by including the pedigree as a covariate and maximized power by 
including individuals with phenotype, but not genotype, data (approximately half of this cohort). We 
determined genome wide significance based on Bonferroni adjustment of two quasi-likelihood score 
tests optimized for either small or nearly-fully penetrant effect sizes. Six loci were significant and five 
suggestive, with approximately equal numbers of loci for the two tests and frequencies of loci with 
single versus multiple mapped markers. Several loci implicate a single gene, including CHD2, NRG3 
and PDE1A which have strong relevance to behavior in humans and other species. We briefly discuss 
how expanded studies of canine breeding programs could advance understanding of learning and 
performance in the mammalian life course. Although human interactions and other environmental 
conditions will remain critical, our findings suggest genomic breeding selection could help improve 
working dog populations.

In addition to the long term and large body of research on dog  behavior1, there is a rapidly growing literature 
focused on behavior and cognition in working  dogs2. This is in part due to interest in the evolutionary biology 
of selected traits such as herding, but also to increasing needs for various types of assistance functions, such as 
guide dogs for blind people; and for police, military, and security working dogs for purposes including olfactory 
detection and deterrence. The average cost of a trained service dog is $15,000–$30,000 (Ref. 3), and working 
dogs at US federal agencies can cost approximately $50,000 or more. As demand for such dogs grows, there is 
increasing interest in improving their training success rate and  performance4. Historically, most research on 
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working dog training has studied behavior and temperament, but cognitive analyses are becoming more common 
and functional magnetic resonance imaging in awake dogs has been applied to this  question5 (reviewed  by2).

Neuroscience has recently experienced an explosion of progress in several areas, including genetics and brain 
imaging. However, there are widespread concerns that too much research lacks a behavioral context or is dissoci-
ated from biology and  psychiatry6,7. The emergence of neuroscience apart from neurology in the early 1900s was 
largely based on experimentation on a great array of diverse  species8. However, since the 1970s there has been 
increasing reliance on mouse models. Mice were used in almost half of studies funded by the US National Insti-
tutes of Health in 2015, whereas the next three species combined (fruit fly, zebrafish, and the worm C. elegans) 
were funded at a ten-fold lower level. Unlike mice and most other animal models, dogs present many human-like 
aspects such as membership in human families, living to advanced age, epidemiology, advanced health care and 
even different types of long-term work  experiences9. Moreover, the evolutionary history of dogs makes them 
a uniquely powerful model for the study of complex  genetics10. Canine model advantages over human inves-
tigation include reduced heterogeneity, larger effect sizes of variations resulting from strong positive selection 
and relaxed negative selection, lack of socioeconomic confounding, and a shorter generation time. Dogs have 
hundreds of isolated populations or breeds with diverse personality and behavior traits. Recent genome scans 
in dogs have mapped personality, normal and problem behaviors, and cognitive traits both in single breeds and 
across diverse  breeds11–15. In parallel, brain imaging studies have revealed structure–function correlations that 
suggest neurodevelopmental and physiological  potential16,17.

For the reasons mentioned above, dogs are an ideal model for identifying genetic variation broadly associ-
ated with learning, defined as a change in an individual’s behavior or abilities resulting from experience; and 
work performance, defined for our purposes here as an individual’s effectiveness at doing a job well. It is widely 
agreed that working dog success reflects the maximal matching of breed physical and behavioral conformation 
with the necessary performance criteria (incl. the lowest rate of excluding faults). The basis for this is that dogs 
work because they find the activity inherently  rewarding18. Retrievers have the desired size and agility, and vari-
ation of the predatory motor pattern sequence: accentuating searching orientation; directly going to accentu-
ated grabbing-biting without first proceeding through eyeing, stalking, and chasing; and never continuing to 
kill-biting. However, selection of optimal breed conformations for different work is not sufficient. Success also 
requires proper development during the early developmental period and both general and specific environmental 
exposures. All working dogs need socialization with humans, sled dogs require socialization with other sled dogs, 
and hunting dogs require exposure to guns firing in their first year of life. Genetic and environmental factors can 
influence these types of success in humans and other animals. Those influences can involve behavior, tempera-
ment, cognition, and their interactions. For instance, the prevalence of attention deficit hyperactivity disorder 
(ADHD) in humans is ~ 4% and its most common comorbidities are learning disabilities (45%), anxiety (38%) 
and other behavioral (31%)  disorders19. Natural hyperactivity, impulsivity, and inattention as in human ADHD 
are common in dogs, vary in frequency and severity across breeds, and are highly comorbid with fearfulness, 
aggressiveness, and compulsive  behaviors20. Longitudinal data from working dog breeding programs present an 
opportunity to advance knowledge of effects that influence success in early behavioral development, preselection 
for training (the subject of this work), training, and work performance and longevity.

The following three examples show recent progress in predicting success of working dog training. The first 
study measured cognitive skills and temperament from birth to adulthood in Labrador and Golden Retrievers, 
and German Shepherd Dogs from The Seeing Eye breeding and training  program21. The traits most predictive 
of successful training were faster solving of a multistep task and lower levels of a type of anxiety (lower maternal 
behavior predicted success but is not consistent across all working dogs). A second study used a battery of 25 
cognitive tests on independent samples of retrievers trained for assistance or olfactory  detection22. The main 
finding was that the different work types of the two populations were reflected in different cognitive tests being 
the most predictive of success. The third study used retrievers trained for assistance  work23. It determined predic-
tive performance by modeling behavioral assessment scores from instruments designed to identify problematic 
behaviors in pet and assistance dogs. Unsurprisingly, that third study assessing problem behaviors was far better 
at predicting dogs that failed whereas the first two studies focused on cognition were far better at predicting 
success.

The present work addresses what may be referred to as preselection of dogs for subsequent training as working 
dogs. Generally, such preselection takes place in the context of requests for and in-person brief evaluation of dogs 
for purchase based on breed, medical, and behavioral criteria. However, this work is a study of a Transportation 
Security Administration (TSA) detector-dog breeding and training program in which dogs were fostered for 
15 months and observed and tested for performance-related behavior at 3, 6, 9 and 12 months (in a period ending 
in 2013). Several of those tests are dependent on odor detection, including finding objects by olfaction. Others 
measure other traits such as interest in possessing a toy or playing tug of war. Specifically, we used a multigenera-
tional TSA cohort of 528 Labrador Retrievers to perform a genome scan of behavioral risk of elimination prior 
to entering training. Studies of the validity of the behavioral testing in this TSA  program24,25 and, by the same 
investigators, in the Australian Border Force Detector dog  program26 that overlapped our time-period have been 
published; but this is the first genetic study. For the few loci in which only one gene is primarily implicated, the 
biological relevance is consistent with behavior. We discuss the potential of such studies to improve the working 
dog  population4 and advance the understanding of complex behavioral systems.

Results
Cohort and population structure analysis. We used a multigenerational population from the TSA 
detector dog breeding and training program to map elimination due to behavioral reasons before commencing 
training (Table 1). In that pretraining period, dogs were tested for behavior at three, six, nine and twelve months, 
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both at TSA facilities and in four different  environments25. We accessed behavioral testing data and biosamples 
collected from four generations of related Labrador Retrievers from 2002–2013. That data also included whether 
puppies were selected for training and, if not, whether they were eliminated for medical or behavioral reasons. 
All breeding Labrador Retrievers were sourced from US breeders of dogs with hunting titles (US) or the Austral-
ian Customs Detector Dog Program (Aus. Customs Service, ACS). Breeding Labrador Retrievers were otherwise 
undocumented to us except that they did not include dogs with brown coat color (associated with show vs. 
working dog  status27) and that ACS dogs presumably were part of a breeding and selection program initiated in 
 199328. The ACS detector dog program followed a breeding and selection program for guide dogs that was initi-
ated by the Royal Guide Dogs Associations of Australia (RGDAA) in 1964 and shortly after was joined by the 
University of Melbourne. The RGDAA program and Kadnook Kennels (Aus.), a key source of their dogs, pro-
vided the base population of the detector dog program. That guide dog population also contained contributions 
from UK and US dogs referred to as “outside” stock (extent unknown)28. At least in its early phase, the detector 
program received dogs determined to be unsuited for the guiding program. The selection goals for the detector 
program were referred to as “to provide a steady supply of dogs suitable for training; dogs with a stable tempera-
ment, free from genetic disorders and with a long and healthy working life”28. The founders and dogs produced 
in our TSA cohort collected through 2013 were 74.3% US, 5.6% ACS, 18.0% US x ACS, and 2.1% of unknown 
source. The pedigree of the full cohort shows a greater risk of elimination for behavioral reasons among dogs 
most closely related to the founder population (Suppl. Fig.  S1). The TSA pretraining program for each dog 
spanned approximately 12 months after which the dogs were either accepted into training (58.9%) or eliminated 
for medical (17.6%) or behavioral (23.9%) reasons. Behavioral testing data were available for 528 dogs, of which 
296 had biosamples used for genome wide SNP genotyping (~ 173 k SNPs, Illumina CanineHD). After quality 
filtering, the final genome wide SNP set contained ~ 112 k markers.

We performed principal component analysis (PCA) of the genotyped Labrador Retrievers to identify popu-
lation structure (Fig. 1). Both PC1 and PC2 showed a slight separation between the US and ACS Labs, and the 
expected intermediate location of the US x ACS crosses. Visualizing additional PCs did not reveal any further 
separation between the groups. STRU CTU RE model-based clustering  analysis29 of the same genotypes failed to 
detect more than one population when run using both admixture and linkage models over a range of K values 
and burnings/MCMC reps.

Table 1.  Case/control information for dogs in the 2013 TSA cohort.

Genotyped Dogs No Genotype

Successful 267 180

Eliminated 29 97

Unknown 0 45

Total Dogs 296 322

Male 158 (17) 147 (44)

Female 138 (12) 130 (53)

Figure 1.  Principle Component Analysis of genotyped Labrador Retrievers. Principal component 1 (PC1) 
plotted against PC2. The value in the parentheses represents the % of variance explained by the component.
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Genome scan for risk of elimination due to behavior. We used ROADTRIPS2 for genome wide asso-
ciation because it controls for both population structure and relatedness, and increases power by including dogs 
with phenotype but no  genotype30. It makes use of kinship information calculated from the pedigree and an 
imputation procedure that accounts for the relatedness of individuals. The program calculates three statistics. 
As the original ROADTRIPS work did, we designed our study to use two of those and to correct for multiple 
testing for all tests. RM is an extension of the  MQLS test that uses pedigree-based weights to improve power 
and is optimal for two-allele disease models with small effect sizes. RW is an extension of the  WQLS test, which 
accounts for correlation among related individuals by incorporating optimal weights based on pedigree infor-
mation and is optimal for rare allele disease models that are close to fully penetrant. Genome wide significance 
was based on Bonferroni adjustment (P ≤ 2.2 ×  10−7) and suggestive significance was arbitrarily set at P ≤ 1 ×  10−5. 
We performed GWA for elimination due to behavioral reasons and identified six significant and five suggestive 
loci (Fig. 2; Table 2). The λ inflation factors for the two tests were slightly above the 1.11 generally considered 
benign. The Q-Q plots showed population structure and relatedness were well controlled. That is consistent with 
the robust control of type 1 error due to population structure and family relatedness demonstrated in studies of 
 ROADTRIPS30.

By the RM test, two intervals were strongly associated with behavioral elimination, 
chr13:55,534,649–59,902,870 (4.37 MB) and chr1:22,989,459–25,289,424 (2.30 MB); and single markers at 
chr7:66,358,701 and chr19:21,040,815 were also significant (CanFam3.1 coordinates). By the RW test, the same 
regions on chromosomes 13 and 1 were strongly associated, in addition to single markers chr6:76,632,282, 
chr36:25,252,101, and chr15:40,757,218. As expected, there was little overlap between the loci detected by RM 
and RW. The two tests had similar yields and numbers of loci with single vs multiple SNPs. None of the signifi-
cant or suggestive loci mapped for behavioral elimination here overlapped C-BARQ behavioral GWAS loci or 
evolutionary selection regions reported for UK Labrador  Retrievers12,27. Comparison to behavioral and cognitive 
markers previously mapped across dog breeds also showed no overlap with the present findings.

We created comprehensive models to simultaneously determine the effect sizes of candidate loci (Table 4). 
For RM loci, the effect of the chr7:66,358,701 AA allele was so large that it overwhelmed all others. For RW 
loci, the chr3:47,134,935 AA allele also had a great effect, but its estimation is uncertain due to quasi-complete 
separation (due to low A allele frequency). Quasi-complete separation occurs when levels in a dependent variable 
separate an independent variable perfectly. When this happens, the estimate can be assumed to be very large, but 
its numeric estimator is unreliable. The RW loci chr13:57,789,399 and chr36:25,252,101 had large effects for the 

Figure 2.  Manhattan and QQ Plots of ROADTRIPS2 output. A Bonferroni cutoff of 2.2 ×  10−7 for significant 
hits and 5 ×  10−5 for suggestive hits is mapped. (A) RM output. (B) RW output.
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Table 2.  Genome scan for behavioral elimination in 2013 TSA cohort. 1 RM or RW GWA-test, with multiple 
testing correction applied for all tests; genome wide significant in bold, suggestive underlined (see Results, 
Methods). 2 Gene annotation of gene(s) nearest single SNPs or spanned for SNP intervals; SNPs within a gene 
in bold, high brain relevance in any species underlined. 3 Three Mb interval is syntenic to three unliked loci in 
humans. MC2R is predominantly expressed in the adrenal gland. 4 Sources of brain enrichment data: mouse 
BioGPS, human GTEx. Human ABHD3 introns have eQTLs for other genes, including ROCK1 in cortex and 
ESCO1 in thyroid. Mouse ROCK1 ref., Greathouse, K.M. Brain Structure and Function 223: 4227–4241 (2018). 
5 KCNJ2 mutation and Andersen-Tawil syndrome description, OMIM170390. Note abutting gene KCNJ16 is 
enriched in thyroid. 6 Many genes at this locus are expressed in salivary glands. 7 Near GNPTAB; in human, 
proximal brain eQTLs for GNPTAB and CHPT1. 8 ENSCAFG00000004229 is highly and widely expressed, 
including in the brain, appears to be a GLUD1/2 retroposed gene. 9 The brain-enriched gene RP11-731C17.2 
(ENSG00000273486.1) is near. Mouse ref. Diab, A. Neuroscience, 448:107–125 (2020). 10 Data source: 
International Mouse Phenotyping Consortium.

SNP (CanFam3.1) GWA  RM1 GWA  RW1 Risk Allele f (Acc.) f (Elim.) Genes2

Brain relevance of top positional 
candidates (GWAS Catalog and cited 
sources)

chr1.22989459 2.39E−11 9.46E−10 G 0.985 1.000
12 genes (incl. SMAD4, MC2R, MC5R; peak 
near CCN2/CTGF)3 NAchr1.24927539 2.39E−11 9.46E−10 G 0.985 1.000

chr1.25289424 1.23E−13 9.57E−10 A 0.983 1.000

chr3.47103534 8.18E−01 5.47E−07 G 0.927 0.966

CHD2

Human GWA brain traits include several 
cognitive, schizophrenia, self-injurious 
behavior. There is extensive knowledge of 
CHD2 in brain biology and pathophysiology 
in humans and mice

chr3.47134935 8.54E−01 5.47E−07 G 0.929 0.966

chr3.47212502 8.18E−01 5.47E−07 G 0.927 0.966

chr4.31420247 7.96E−06 9.08E−03 G 0.948 0.966 NRG3
Human GWA traits incl. schizophrenia and 
drug use. There is extensive knowledge of 
NRG3 in brain biology and pathophysiology 
in humans and mice

chr6.76632282 3.66E−03 6.70E−12 G 0.951 1.000 DEPDC1-AS1, DEPDC1, LRRC7
LRRC7: human GWA incl. many cognitive 
traits, attention deficit hyperactivity disor-
der, drug use

chr7.66358701 3.25E−07 6.64E−02 G 0.948 0.919 ABHD3Note #4

In mouse, highly enriched in brain; highest 
brain expression in cerebellum in humans 
and mice (Human ABHD3 introns contain 
ROCK1 cortex eQTL, ESCO1 thyroid eQTL 
(GTEx); Mouse ROCK1 dosage affects den-
dritic spine structure; Human ESCO1 GWA 
subcortical volume)4

chr9.16559175 2.51E−01 5.60E−06 G 0.867 0.983 KCNJ2 (closely followed by KCNJ16)5

Human KCNJ2 mutations cause Andersen-
Tawil syndrome (OMIM170390), which 
includes a distinct neurocognitive phenotype 
with deficits in executive function and 
abstract reasoning, and may also present 
mood disorders and  seizures5

chr13.55534649 6.36E−22 4.21E−17 A 0.976 0.983

54 genes (incl. EPHA5, GNRHR; peak near 
CENPC1)6 NA

chr13.57789399 3.66E−25 4.12E−17 C 0.974 0.983

chr13.58498102 6.29E−22 4.18E−17 G 0.976 0.983

chr13.59658137 6.29E−22 4.18E−17 A 0.976 0.983

chr13.59763520 4.27E−18 2.39E−12 G 0.976 0.983

chr13.59902870 1.64E−23 2.43E−01 A 0.976 1.000

chr15.40757218 3.86E−03 6.86E−08 A 0.948 1.000 DRAM1Note #7
Many human GWA traits of brain volume 
and structure, incl. white matter micro-
structure

chr19.21040815 1.70E−07 2.56E−02 A 0.938 0.966 ENSCAFG00000004229Note #8, PLEKHB2, 
HS6ST1

HS6ST1 was mapped in human GWA of 
general cognitive ability and has extensive 
research literature in multiple areas of 
neuroscience, including neurodevelopment, 
effects of stress on gene expression and 
behavior, and reproductive behavior

chr23.33369350 1.59E−01 7.71E−06 A 0.839 0.983 NCK1Note #9

There is one human GWA brain trait: 
neuroticism. In mice, loss of NCK1 affects 
dendritic spine density in the amygdala, 
associated with abnormal stress response 
and increased  anxiety9

chr36.25252101 7.98E−03 4.05E−08 A 0.034 0.069

PDE1A

Human brain GWA traits include several 
cognitive traits and Alzheimers’s. Mouse 
mutants have increased anxiety, abnormal 
open field behavior and  hyperactivity10. 
There is extensive knowledge of PDE1A 
in brain biology and pathophysiology in 
humans and mice

chr36.25648690 7.98E−03 4.05E−08 C 0.034 0.069
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heterozygous state (odds ratio, OR = 14.42 and 5.05, respectively), but the homozygous risk state was absent in the 
cohort. In a combined RM and RW assessment, only chr3:47,134,935 and chr36:25,252,101 remained significant 
with large effect sizes (quasi-complete separation for chr3:47,134,935 and OR = 4.63 for chr36: 25,252,101). The 
effects detected for chr7 in RM in and for chr13 in RW became non-significant.

Candidate gene annotation for theory building. Several loci implicate one or few genes positionally 
(Table 2). Some single-SNP loci lie within or near one gene, and one multi-SNP locus overlaps a single gene. 
Such candidate genes known to have major behavioral effects in other species include CHD2, NRG3 and PDE1A. 
Exclusion of puppies for behavioral reasons prior to entering training is a complex trait likely to involve many 
brain functions. That and the small number of candidate genes suggests geneset enrichment analysis is unlikely 
to be useful here. While brain expression of candidate genes is consistent with this behavioral trait, at least 80% 
of mammalian genes are expressed in the brain. We thus avoid using the known biology of candidate genes to 
support the mapping and allow interpretation of our GWA candidate genes. However, for purposes of prior-
itization and theory building, we performed a survey of brain relevance and genomic demographics (Table 3). 
Four genes each were associated with human educational attainment and intellectual disability, of which CHD2, 
NRG3 and LRRC7 were associated with both. NRG3 and LRRC7 were also associated with accelerated divergence 
in humans. Very few candidate genes were implicated in human neurodevelopmental disorders (N = 2 for high 
confidence geneset), autism (N = 1 for known and suspected) or epilepsy (N = 2). One gene, CHD2, was associ-
ated with all intelligence and neurodevelopmentally related traits mentioned above. CHD2 was also the only 
tier 1 candidate known to be a haploinsufficient disease gene and to be intolerant to loss of function mutation. 
DRAM1 is notable because it is among the genes most strongly associated with structure of many brain regions 
across seven studies (GWAS Catalog). For example, DRAM1 was mapped with a P = 5 ×  10−52 in a GWAS of sub-
cortical  volume31.

For two loci that have more than one candidate gene, this analysis together with the behavioral relevance 
noted in Table 2 implicate one gene at each locus: LRRC7 on chr6 and HS6ST1 on chr19. HS6ST1 was one of 
only two candidates known to be a curated neurogenesis gene and is related to HS6ST2, which we previously 

Table 3.  Brain trait and genomics demographics of behavioral elimination GWA candidate genes.

Brain and genomic classifica�ons1

 C
HD

2
 N

RG
3

 A
BH

D3
 K

CN
J2

 D
RA

M
1

 N
CK

1
 P

DE
1A

 C
HP

T1
 D

EP
DC

1
 E

SC
O

1
 G

N
PT

AB
 H

S6
ST

1
 LR

RC
7

 P
LE

KH
B2

 R
O

CK
1

Neurogenesis, Gene Ontology GO:0022008, vertebrates, n=4071
Brain structure, GWA genes "mapped", GWAS Catalog, n=937
Educa�onal a�ainment, gene-based mapping, n=1386
Differen�al brain gene expression in 3 wild v. domest. mamm., n=121

Neurodevelopmental disorder, high confidence 2, n=1586
Neurodevelopmental disorder, candidates2, n=6479
Intellectual disability, high confidence (SysID) 2, n=1389
Intellectual disability, candidates (SysID)2, n=1213
Au�sm spectrum disorder, high confidence (SFARI_1 genes) 2, n=194
Au�sm spectrum disorder, candidates (SFARI_2_3_S genes) 2, n=791
Au�sm Spectrum Disorder, exome sequencing & network predic�on, n=1119
Epilepsy2

Neuro�cism, depression & wellbeing, gene-based mapping, n=660
Tobacco & alcohol use, gene based mapping, n=1117
Posi�ve selec�on, dog breeds sampled in North Am. & Europe, n=1890
Posi�ve selec�on, 15 Chinese indigenous dog breeds, n=963
Posi�ve selec�on in at least two of ca�le, goat, pig & sheep, n=666
Posi�ve selec�on, human, n=1412
Loss of func�on intolerant, human, n=3154
Human accelerated divergence regions, n=1623
Protein-coding posi�ve selec�on, vertebrates, n=550
Disease associated genes (ClinVar), n=3047
Haploinsufficient disease genes (ClinGen), n=294
Nearest gene to GWAS peaks (MacArthur Lab), n=6288
Single-trait pan-GWA meta-analysis (Watanabe et al. 2019), n=1968
Top pleiotropic pan-GWA meta-analysis (Watanabe et al. 2019), n=1968

Tier 1, single gene loci Tier 2, loci with few genes

1,2Genesets are provided with references in Zapata et al. bioRxiv doi.org/10.1101/2020.07.19.211078, except those marked by 
superscript 2, from Leblond et al. Mol. Cell Neurosci. 113:103623 (2021); NCK1 neuro�cism GWA, Luciano M. et al. Nat Genet 50:6-
11 (2018); and ESCO1 brain structure GWA, van der Meer D, et al. Nat Commun 11:3512 (2020)
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mapped for increased social behavior. Although ABHD3 was classified as a positional single-gene locus, the 
gene harbors expression quantitative trait loci (eQTLs) for ROCK1 and ESCO1; and all three genes are good 
behavioral candidates (Tables 1 and 2). Two loci contain 66 other candidate genes that were not analyzed, but 
which contain genes with established (e.g., the neurodevelopmental genes SMAD4 and EPHA5; and MC2R, the 
adrenocorticotropic hormone receptor expressed in the adrenal gland which receives the last signal within the 
hypothalamic, pituitary, adrenal axis) or more enigmatic (e.g., CCN2/CTGF32) behavioral relevance.

Discussion
Experimental approach and robustness. Our genome scan of risk of elimination due to undesirable 
behavior in Labrador Retrievers in the TSA detection dog breeding and raising program yielded six genome-
wide significant and five suggestive loci. As far as we know, none of the mapped haplotypes has been reported 
in previous genetic mapping studies or genome scans for footprints of selection under domestication. Our map-
ping approach was to use the ROADTRIPS method developed for case–control association testing in related 
individuals sampled from structured populations. The method is not constrained by how subjects are related and 
allows for inclusion of individuals with pedigree and phenotype data but lacking genotypes. The PCA analysis 
distinguished the slight difference that resulted from the geographical origins of breeding Labrador Retriev-
ers from the US and Australia. However, the two Labrador Retriever populations are closely related and US 
dogs contributed to the Australian  program28. That was supported by the STRU CTU RE analysis, which failed 
to detect population structure in our cohort. The Q-Q plots showed good control of the false positive rate due 
to population structure and family relatedness (consistent with studies of ROADTRIPS’ control of such type 1 
error in case–control family-based  studies30). A limitation of the cohort and the indicated mapping approach 
is the inability to calculate heritability. We were also not able to perform a type of validation using the same 
cohort because it could not be split into learning and testing sets (as the pedigree was included in the association 
analysis).

There are several challenges to the replication of this study related to the definitions of behavioral traits. 
Studies which overlapped the time of this work assessed the screening methods of the  TSA24,25 and Australian 
Border Force Detector  dog26 breeding and training programs. Based on survey data from 34 TSA dog handlers, 
13 of 15 traits measured in TSA puppy testing showed content validity (i.e., the TSA standardized tests given to 
dogs in their first year matched well with handlers’ understanding of the most important operational traits)25. 
Unmeasured traits that were also predictive of success included “play” and off-duty “calmness”. However, for 
our cohort, the pretraining elimination of dogs for behavioral reasons was subjective and we do not have data 
describing the bases for those final decisions. Any behavior that is perceived as incompatible with successful 
training and deployment can result in elimination in olfactory detection  programs28. Examples include, different 
types of fearfulness and anxiety, aggression, hyper- and hypo-activity, lack of innate drive to search and possess 
training toys, and insufficient human socialization. We don’t know how this information was used, but for some 
dogs eliminated due to behavior, our data noted traits such as distractibility, lack of motivation, and submissive 
urination. A recent study of 17 experienced explosive detection canine practitioners in the law enforcement, 
military, federal, and private sectors highlighted the following traits as being associated with success: “hunt 
drive” (motivation, a high level of energy, focus, and the ability to ignore or recover quickly from distractions), 
stamina to continue working, and the ability to generalize odors (e.g. identify explosives that are similar but 
not identical to those used in training)33. At the same time, behavioral tests, descriptive vocabulary, and other 
aspects of explosives dog selection are inconsistent between working dog  organizations34. Such variable criteria 
for selecting dogs, as well as differences in work specialization and environments, may make it challenging to 
find genetic associations unless they have large effects and are correlated across multiple traits. Strengths of the 
present model include standardized TSA puppy program evaluation, pedigree information, and presence of 
vastly reduced genetic, and thus also phenotypic, heterogeneity within single breeds. In ongoing studies, we are 
analyzing the longitudinal TSA puppy testing data for these same dogs—separately and in combined analyses 
with the program elimination data reported on here.

Implications for the working dog and behavioral genetics fields. Because Labrador Retrievers are 
very popular working dogs, an important finding is that behavioral haplotypes previously mapped or shown to 
be under selection in this  breed12,27 were not associated with pretraining elimination due to behavior. That was 
also true for large effect behavioral variation mapped in interbreed  GWASs13,14,35,36. For instance, a haplotype 
with a coding variant of IGSF1 that is strongly associated with anxiety and fear traits across breeds and has an 
allele frequency of 0.18 in pet  Labradors14 was homozygous non-risk in the present cohort. These findings are 
consistent with effective negative selection of such variations in hunting line Labradors or in the breeding pro-
grams involved here. Our identification of new loci associated with pretraining elimination due to behavioral 
reasons suggests that selective breeding might be used to improve the success rates in working dog breeding 
populations. The replication of this study in other working dog populations will be critical to decisions about 
whether and how to incorporate these markers into breeding strategies. If genome wide polygenic risk could be 
measured in well-powered cohorts, genomic estimated breeding values built on that would likely surpass the 
efficiency of methods based on pedigree or  phenotype4.

Joint modeling of mapped loci showed at least two that have moderate-to-large effect sizes. The chr36:25 Mb 
locus had an OR of 4.63 and chr3:47 Mb can be considered incalculable due to quasi-complete separation. 
Importantly, the chr3:47 Mb estimate was from comparing homozygotes states whereas there were no dogs 
homozygous for the elimination risk allele at the chr36:25 Mb locus. Further studies of all mapped haplotypes 
are necessary to understand the evolutionary, genetic, and physiological mechanisms, and relevance to other 
breeds. The rapid genetic divergence and population bottlenecks in the development of dog breeds over the last 
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few hundred years have resulted in phenotypes with simple inheritance patterns that have been associated with 
different genetic variants between  breeds37. However, complex behavioral traits are influenced by many genetic 
and environmental factors and thus are challenging to understand. Historically in animal breeding, quantitative 
traits were described by the “infinitesimal model” in which phenotypes result from large numbers of genetic 
factors, each with an infinitesimal additive effect. More recently, the “omnigenic model” describes two types of 
genetic  effects38. Core variants have larger effect sizes and occur in biochemical pathways related to the pheno-
type, while peripheral variants have smaller effects. If additional investigation showed our candidate loci are 
characteristic of the omnigenic model, that would suggest the large effect variations may have diagnostic and 
interventional utility.

The present working dog model is part of an untapped birth to death cohort with standardized health, behav-
ior, cognitive, training, performance, and environmental data. If the necessary resources were in place, molecular 
epidemiological and computational psychiatric approaches would present a powerful framework for studying 
learning and working performance as described in the Introduction. Although ethology requires deconstruc-
tion to describe and measure isolated effects, it is clear the complex behaviors studied here are integrated across 
physical and behavioral breed conformations, cognition, temperament, critical period development, and gene-
environment effects. As an example of the problem, consider a study of over 11,000 cadets assessed throughout 
their time in the US Military  Academy39. At entry, cognitive ability was negatively correlated with both physical 
ability and grit (i.e., zeal, hard work, and perseverance). However, whereas cognitive ability was the best predictor 
of academic and military grades, both completion of initiation training and 4-year graduation were predicted 
better by non-cognitive traits. We are not equating TSA dog training with West Point cadet training, but rather 
drawing attention to the limitation of studying subjects sampled at elite institutions. Compared to the total 
population, elite cohorts tend to have very low variances across desired traits (i.e., everyone is preselected from 
the tail of a distribution). Our goal here was to genetically identify the likelihood of success in entering TSA 
training. If we had instead mapped failure to graduate training (i.e., using only dogs who succeeded in entering 
training), it is unlikely we would have identified the loci we did. Moreover, a complete working dog model would 
allow life course studies across a 12-year mean lifespan.

Gene annotation for gene prioritization, theory building and future validation. Because the 
mapped trait is complex and the GWA cannot be confirmed yet, the gene annotation provides little weight as 
evidence that the mapping is true. Without knowing that and whether variation affecting a candidate gene con-
tributes to the phenotype, any biological interpretation of that gene is tentative. However, both the effect sizes 
of loci and the biology of candidates can be used to prioritize follow-up studies. Some investigators may want to 
pursue the largest effect loci for breeding purposes. Others may prioritize validating and dissecting the molecu-
lar mechanism of a candidate gene at a single-gene locus based on, say, known protein function, brain expression 
patterns, or human or mouse phenotypes (see brain relevance of candidate genes in Table 2). Candidate genes of 
interest include CHD2, NRG3, DRAM1 and PDE1A among the tier 1 loci that positionally implicate one gene. 
The CHD2 and PDE1A loci are also of interest for having large effect sizes in the combined RM/RW comprehen-
sive model. The tier 1 locus implicating ABHD3 is supported by the comprehensive RM model. Notably, human 
ABHD3 contains variations associated with expression levels of nearby ROCK1 and ESCO1, which are strong 
behavioral candidate genes. At two tier-2 loci implicating more than one gene, the biological relevance favors 
one gene at each locus: LRRC7 on chr6 and HS6ST1 on chr19. LRRC7 is particularly interesting here because it 
is associated with human educational attainment; intellectual disability; neuroticism, depression, and subjective 
wellbeing; and tobacco and alcohol use. It has also been shown to be under positive selection in humans and 
to be differentially expressed in three pairs of mammals comparing wild vs. domesticated  species40. HS6ST1 is 
interesting because we previously mapped canine social behavior to the locus of its paralog HS6ST2, which is 
also a neuroticism GWA gene in  humans14,41.

The extensive mapped intervals on chr1 and chr13 are suggestive of recent positive selection. Of those, 
the hits on chr13 are also supported by the comprehensive RW model (Table 4). Both loci contain at least one 
prominent neurodevelopmental gene (SMAD4 and EPHA5, respectively) and one neuropeptide receptor central 
to the Hypothalamic–Pituitary–Adrenal/-Gonadal axes (melanocortin/adrenocorticotropic hormone receptor 
MC2R, adrenal/HPA; and gonadotropin-releasing hormone receptor GNRHR, pituitary/HPG). A coding vari-
ant of MC2R common in ancient and herding dog breeds (~ 25% and ~ 8% allele frequencies, respectively), but 
absent or rare in other breeds including Labrador Retrievers, was shown to be associated with reduced gazing 
at experimenters in the “unsolvable test”42. Of our three mapped SNPs in the interval containing MC2R, the 
nearest to that variant position is 538,389 bp away (the others ~ 1 Mb or more). That coding variant and our risk 
allele at the nearest SNP are both present in the canFam4 German Shepherd genome assembly (alleles A and G, 
respectively; compared to alleles G and A in the Boxer assembly canFam3.1). Further studies are necessary to 
determine if the haplotype we mapped contains this MC2R coding variant.

It will be interesting to see if closely related breeds, such as Golden and Flat Coated Retrievers, or more 
distantly related working dog breeds like German Shorthaired Pointers carry the risk alleles we mapped on chr1 
and chr13 and can thus be used for fine  mapping43. Alternatively, brain eQTL data for Labrador Retrievers could 
reveal if any genes in the intervals have differential expression associated with that  haplotype44. Whereas that 
requires postmortem samples, it is also possible to validate mapped loci behaviorally, especially where both risk 
and non-risk alleles are common. For some candidate genes, there are testable clues of associations with one 
type of brain trait, such as NCK1 with neuroticism, and DRAM1 and ESCO1 with brain structure. For instance, 
the NCK1 locus can be explored for association with related traits in genotyped dogs with C-BARQ dog owner 
behavioral questionnaire  data36. DRAM1 and ESCO1 can be tested for genetic associations with MRI-based brain 
structure  differences16,35. Lastly, the several dog loci that in humans are associated with cognitive traits can be 
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tested for epistasis with each other and for association with the TSA training test data for this population that is 
currently being analyzed (and with emerging canine cognitive  tests11).

Conclusions
Our genome scan of pretraining elimination due to undesired behavioral traits in the TSA detector dog breeding 
and training program identified six genome wide significant loci. We used family-based association methods that 
controlled for relatedness by inclusion of the pedigree as a covariate and increased power by inclusion of dogs 
with phenotype but no genotype data. The top limitation of the study is the current lack of a validation cohort, 
which we are addressing in ongoing studies. One suggestion that the mapping is likely to be true is the strong 
behavioral relevance of multiple candidate loci which implicate a single gene. These findings are consistent with 
the possibility of improving the efficiency and quality of working dog programs through genomic estimated 
breeding values.

Materials and methods
Data acquisition. Data used in this study were generated from an olfactory detection dog breeding and 
training program the TSA ran from 2002 to 2013. Samples from litters born between 2002–2012 were genotyped 
in 2012–2013. The behavioral data were stored in a  RedCap45 database that was designed specifically for genomic 
and behavioral research. Phenotype data for 528 Labrador Retrievers were provided. In that original study, 296 
of the same dogs were randomly selected for genotyping (Illumina Infinium Assay and CanineHD Beadchip 
(Illumina Part No. 11322460)) and the resulting information was included in the data we received. That genotyp-
ing data yielded 173,662 SNPs spanning the dog genome.

Ethics statement. The biological samples and genotype data, and the phenotype data were collected within 
the US Transportation Security Administration’s (TSA) canine olfactory detection breeding and training pro-
gram between 2002–2013 following all necessary guidelines and regulations. The present study is based on 
access to those data.

Data processing and statistical analysis. Genotyping data were first converted from the CanFam2.1 to 
CanFam3.1 dog genome build using the UCSC Lift Genome Annotations tool (http:// www. genome. ucsc. edu/ 
cgi- bin/ hgLift Over). Quality control was performed in PLINK 1.9046 using a minor allele frequency cutoff of 
2.5%, Hardy–Weinberg equilibrium filter of 1E-5, and maximum SNP missingness rate of 10%. This resulted in 
a cleaned dataset of 112,284 SNPs.

To investigate underlying population structure, a Principal Components Analysis (PCA) was performed on 
the genotyped dogs after imputing missing genotypes and clumping SNPs utilizing the bigsnpr package in  R47. 
Variance explained for each included SNP was exported for the top 25 PC’s to assess their loading values. A 
pedigree for the family of dogs was developed using the kinship2 package in  R48.

To identify genomic regions associated with behavioral elimination, a Genome Wide Association Study 
(GWAS) was performed using ROADTRIPS230. Prior to running, kinship  coefficients49 were calculated using 
the KinInbcoef v1.1  software50 and missing genotypes generated for non-genotyped, related dogs with known 
elimination status. ROADTRIPS2 was run with both genotyped and non-genotyped dogs that shared the same 

Table 4.  Comprehensive modeling for simultaneous effect size determination of GWAS hits. Positions are 
generated from the CanFam3.1 genome assembly.

Chromosome Position (CanFam3.1) Allele comparison

RM RW RM and RW

Odds ratio
95% Wald 
confidence limits Odds ratio

95% Wald 
confidence limits Odds ratio

95% Wald confidence 
limits

1 2,52,89,424 AA vs. GA 0.67 0.06 7.491 – – – 0.173 0.001 20.159

3 4,71,34,935 AA vs. GG – – –  > 999.999 39.792  > 999.999  > 999.999 16.219  > 999.999

3 4,71,34,935 AG vs. GG – – – 0.496 0.124 1.986 0.465 0.111 1.939

4 3,14,20,247 AG vs. GG 1.282 0.293 5.613 – – – 1.052 0.143 7.725

6 7,66,32,282 AG vs. GG – – – 0.365 0.034 3.956 0.031  < 0.001 8.034

7 6,63,58,701 AA vs. GG 112.194 8.222  > 999.999 – – – 247.529 0.408  > 999.999

7 6,63,58,701 AG vs. GG 0.741 0.195 2.818 – – – 1.724 0.35 8.484

9 1,65,59,175 AA vs. GG – – – 1.804 0.153 21.317 1.179 0.073 18.961

9 1,65,59,175 AG vs. GG – – – 0.069 0.008 0.574 0.081 0.009 0.699

13 5,77,89,399 AC vs. CC 2.014 0.238 17.033 14.416 1.482 140.223 8.144 0.306 216.926

15 4,07,57,218 AA vs. GA – – – 2.016 0.265 15.34 7.371 0.235 230.76

19 2,10,40,815 AA vs. GA 1.087 0.288 4.098 – – – 1.195 0.217 6.598

23 3,33,69,350 AA vs. GG – – – 2.737 0.246 30.482 4.925 0.188 129.167

23 3,33,69,350 GA vs. GG – – – 0.206 0.008 5.551 0.295 0.007 13.169

36 2,52,52,101 AC vs. CC – – – 5.055 1.541 16.581 4.631 1.376 15.588

http://www.genome.ucsc.edu/cgi-bin/hgLiftOver
http://www.genome.ucsc.edu/cgi-bin/hgLiftOver
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pedigree and had elimination status. Figures were generated for the output utilizing the qqman package in  R51. 
Genome wide significance was based on Bonferroni adjustment (α = 0.05/112,246 SNPs/2 GWAS tests = 2.2 ×  10−7) 
and suggestive significance was arbitrarily set at P ≤ 1 ×  10−5.

The comprehensive models for simultaneous effect size determination were performed on genotyped dogs 
alone using only the significant hits generated by the GWAS. This approach was carried on as multiple logistic 
regressions where the elimination status was defined as the dependent variable and the specific alleles for the 
selected hits defined as categorical dependent variables. This approach was done independently for hits obtained 
through RM and RW statistics in addition the combined RM and RW list. All regression analysis was performed 
in SAS/STAT v.9.4.

Genome annotation. Genome annotation was performed on the UCSC Genome Browser. All canine 
genome coordinates reported here correspond to the canFam3 assembly. Gene annotation was performed using 
the Broad Improved Canine Annotation  v152 and checked for different or missing gene content and accepted 
gene  nomenclature53 by analyzing the syntenic intervals in the human genome (In Other Genomes (Convert) 
function; hg19 and hg38 assemblies).

Data availability
Phenotype data are included as Supplementary Information in this work. Genotyping data are available in a 
public repository: https:// data. mende ley. com/, https:// doi. org/ 10. 17632/ hrtpm fyypm.1.
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